Communicating with Errors

We learned how to *encrypt* communication so that an eavesdropper cannot find out your personal information.

What if your enemy is not an eavesdropper, but nature?

Soon, we will learn how to send messages *reliably*, even when nature is *deleting* parts of your message.

Communicating with Errors

We learned how to *encrypt* communication so that an eavesdropper cannot find out your personal information.

What if your enemy is not an eavesdropper, but nature?

Soon, we will learn how to send messages *reliably*, even when nature is *deleting* parts of your message.

Today: We finish modular arithmetic and learn about polynomials.

Look at a composite modulus, $\mathbb{Z}/35\mathbb{Z}$.

Look at a composite modulus, $\mathbb{Z}/35\mathbb{Z}$. Here, $35 = 5 \cdot 7$.

Look at a composite modulus, $\mathbb{Z}/35\mathbb{Z}$. Here, $35 = 5 \cdot 7$.

How is $\mathbb{Z}/35\mathbb{Z}$ related to $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$?

Look at a composite modulus, $\mathbb{Z}/35\mathbb{Z}$. Here, $35 = 5 \cdot 7$.

How is $\mathbb{Z}/35\mathbb{Z}$ related to $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$?

Take a number in $\mathbb{Z}/35\mathbb{Z}$, e.g., 24.

Look at a composite modulus, $\mathbb{Z}/35\mathbb{Z}$. Here, $35 = 5 \cdot 7$.

How is $\mathbb{Z}/35\mathbb{Z}$ related to $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$?

Take a number in $\mathbb{Z}/35\mathbb{Z}$, e.g., 24.

• In $\mathbb{Z}/5\mathbb{Z}$, we have $24 \equiv 4 \pmod{5}$.

Look at a composite modulus, $\mathbb{Z}/35\mathbb{Z}$. Here, $35 = 5 \cdot 7$.

How is $\mathbb{Z}/35\mathbb{Z}$ related to $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$?

Take a number in $\mathbb{Z}/35\mathbb{Z}$, e.g., 24.

- In $\mathbb{Z}/5\mathbb{Z}$, we have $24 \equiv 4 \pmod{5}$.
- In $\mathbb{Z}/7\mathbb{Z}$, we have $24 \equiv 3 \pmod{7}$.

Look at a composite modulus, $\mathbb{Z}/35\mathbb{Z}$. Here, $35 = 5 \cdot 7$.

How is $\mathbb{Z}/35\mathbb{Z}$ related to $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$?

Take a number in $\mathbb{Z}/35\mathbb{Z}$, e.g., 24.

- In $\mathbb{Z}/5\mathbb{Z}$, we have $24 \equiv 4 \pmod{5}$.
- In $\mathbb{Z}/7\mathbb{Z}$, we have $24 \equiv 3 \pmod{7}$.

So, we have $24 = (4 \text{ in } \mathbb{Z}/5\mathbb{Z}, 3 \text{ in } \mathbb{Z}/7\mathbb{Z})$.

Look at a composite modulus, $\mathbb{Z}/35\mathbb{Z}$. Here, $35 = 5 \cdot 7$.

How is $\mathbb{Z}/35\mathbb{Z}$ related to $\mathbb{Z}/5\mathbb{Z}$ and $\mathbb{Z}/7\mathbb{Z}$?

Take a number in $\mathbb{Z}/35\mathbb{Z}$, e.g., 24.

- In $\mathbb{Z}/5\mathbb{Z}$, we have $24 \equiv 4 \pmod{5}$.
- In $\mathbb{Z}/7\mathbb{Z}$, we have $24 \equiv 3 \pmod{7}$.

So, we have $24 = (4 \text{ in } \mathbb{Z}/5\mathbb{Z}, 3 \text{ in } \mathbb{Z}/7\mathbb{Z})$.

From (4,3), can we go back to 24?

Does the system

$$x \equiv 4 \pmod{5}$$
$$x \equiv 3 \pmod{7}$$

have a solution in $\mathbb{Z}/35\mathbb{Z}$?

Does the system

$$\begin{array}{ll} x \equiv 4 \pmod{5} \\ x \equiv 3 \pmod{7} \end{array}$$

have a solution in $\mathbb{Z}/35\mathbb{Z}$?

Manual way of finding the solution: first, list all numbers which are equal to 3, modulo 7.

Does the system

$$\begin{array}{ll} x \equiv 4 \pmod{5} \\ x \equiv 3 \pmod{7} \end{array}$$

have a solution in $\mathbb{Z}/35\mathbb{Z}$?

Manual way of finding the solution: first, list all numbers which are equal to 3, modulo 7.

▶ 3, 10, 17, 24, 31.

Does the system

 $\begin{array}{ll} x \equiv 4 \pmod{5} \\ x \equiv 3 \pmod{7} \end{array}$

have a solution in $\mathbb{Z}/35\mathbb{Z}$?

Manual way of finding the solution: first, list all numbers which are equal to 3, modulo 7.

▶ 3, 10, 17, <mark>24</mark>, 31.

The highlighted number also equals 4, modulo 5.

Does the system

 $\begin{array}{ll} x \equiv 4 \pmod{5} \\ x \equiv 3 \pmod{7} \end{array}$

have a solution in $\mathbb{Z}/35\mathbb{Z}$?

Manual way of finding the solution: first, list all numbers which are equal to 3, modulo 7.

▶ 3, 10, 17, <mark>24</mark>, 31.

The highlighted number also equals 4, modulo 5.

Does a solution always exist?

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1 \equiv 1 \pmod{5} & \Delta_2 \equiv 0 \pmod{5} \\ \Delta_1 \equiv 0 \pmod{7} & \Delta_2 \equiv 1 \pmod{7} \end{array}$$

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

To construct Δ_1 :

Any multiple of 7 is 0 modulo 7.

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

- Any multiple of 7 is 0 modulo 7.
- So consider $\Delta_1 = 7 \cdot (7^{-1} \mod 5)$.

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

- Any multiple of 7 is 0 modulo 7.
- ► So consider $\Delta_1 = 7 \cdot (7^{-1} \mod 5)$. This satisfies $\Delta_1 \equiv 1 \mod 5$.

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

- Any multiple of 7 is 0 modulo 7.
- ► So consider $\Delta_1 = 7 \cdot (7^{-1} \mod 5)$. This satisfies $\Delta_1 \equiv 1 \mod 5$.
- Here, $7^{-1} \mod 5 = 2^{-1} \mod 5 = 3$.

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

- Any multiple of 7 is 0 modulo 7.
- So consider Δ₁ = 7 · (7⁻¹ mod 5). This satisfies Δ₁ ≡ 1 mod 5.
- Here, $7^{-1} \mod 5 = 2^{-1} \mod 5 = 3$. So, $\Delta_1 = 21$.

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

- Any multiple of 7 is 0 modulo 7.
- ► So consider $\Delta_1 = 7 \cdot (7^{-1} \mod 5)$. This satisfies $\Delta_1 \equiv 1 \mod 5$.
- Here, $7^{-1} \mod 5 = 2^{-1} \mod 5 = 3$. So, $\Delta_1 = 21$.
- Similarly, $\Delta_2 = 5 \cdot (5^{-1} \mod 7) = 15$.

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1 \equiv 1 \pmod{5} & \Delta_2 \equiv 0 \pmod{5} \\ \Delta_1 \equiv 0 \pmod{7} & \Delta_2 \equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

- Any multiple of 7 is 0 modulo 7.
- ► So consider $\Delta_1 = 7 \cdot (7^{-1} \mod 5)$. This satisfies $\Delta_1 \equiv 1 \mod 5$.
- Here, $7^{-1} \mod 5 = 2^{-1} \mod 5 = 3$. So, $\Delta_1 = 21$.
- Similarly, $\Delta_2 = 5 \cdot (5^{-1} \mod 7) = 15$.
- So, $x = 4 \cdot 21 + 3 \cdot 15 = 129...$

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

- Any multiple of 7 is 0 modulo 7.
- ► So consider $\Delta_1 = 7 \cdot (7^{-1} \mod 5)$. This satisfies $\Delta_1 \equiv 1 \mod 5$.
- Here, $7^{-1} \mod 5 = 2^{-1} \mod 5 = 3$. So, $\Delta_1 = 21$.
- Similarly, $\Delta_2 = 5 \cdot (5^{-1} \mod 7) = 15$.
- So, $x = 4 \cdot 21 + 3 \cdot 15 = 129...$ which equals 24, modulo 35.

Idea: Construct numbers Δ_1 and Δ_2 so that:

$$\begin{array}{lll} \Delta_1\equiv 1 \pmod{5} & \Delta_2\equiv 0 \pmod{5} \\ \Delta_1\equiv 0 \pmod{7} & \Delta_2\equiv 1 \pmod{7} \end{array}$$

Then, we can check that $4 \cdot \Delta_1 + 3 \cdot \Delta_2$ satisfies

$$x \equiv 4 \pmod{5}$$
 and $x \equiv 3 \pmod{7}$.

To construct Δ_1 :

- Any multiple of 7 is 0 modulo 7.
- ► So consider $\Delta_1 = 7 \cdot (7^{-1} \mod 5)$. This satisfies $\Delta_1 \equiv 1 \mod 5$.
- Here, $7^{-1} \mod 5 = 2^{-1} \mod 5 = 3$. So, $\Delta_1 = 21$.

• Similarly,
$$\Delta_2 = 5 \cdot (5^{-1} \mod 7) = 15$$
.

• So, $x = 4 \cdot 21 + 3 \cdot 15 = 129...$ which equals 24, modulo 35.

This requires gcd(5,7) = 1.

Chinese Remainder Theorem (CRT): If $y_1, ..., y_n$ are fixed numbers and the moduli $m_1, ..., m_n$ are pairwise coprime (i.e., $gcd(m_i, m_i) = 1$ for all $i \neq j$), then the system

 $x \equiv y_1 \pmod{m_1}$: $x \equiv y_n \pmod{m_n}$

has a unique solution in $\mathbb{Z}/m_1 \cdots m_n \mathbb{Z}$.¹

¹The construction is the same as before—see notes for details.

Chinese Remainder Theorem (CRT): If $y_1, ..., y_n$ are fixed numbers and the moduli $m_1, ..., m_n$ are pairwise coprime (i.e., $gcd(m_i, m_i) = 1$ for all $i \neq j$), then the system

 $x \equiv y_1 \pmod{m_1}$ \vdots $x \equiv y_n \pmod{m_n}$

has a unique solution in $\mathbb{Z}/m_1 \cdots m_n \mathbb{Z}$.¹

Why is the solution unique?

¹The construction is the same as before—see notes for details.

Chinese Remainder Theorem (CRT): If $y_1, ..., y_n$ are fixed numbers and the moduli $m_1, ..., m_n$ are pairwise coprime (i.e., $gcd(m_i, m_i) = 1$ for all $i \neq j$), then the system

 $x \equiv y_1 \pmod{m_1}$: $x \equiv y_n \pmod{m_n}$

has a unique solution in $\mathbb{Z}/m_1 \cdots m_n \mathbb{Z}^1$.

Why is the solution unique? Consider the map

$$f: \mathbb{Z}/m_1 \cdots m_n \mathbb{Z} \to (\mathbb{Z}/m_1 \mathbb{Z}) \times \cdots \times (\mathbb{Z}/m_n \mathbb{Z})$$

given by $f(x) = (x \mod m_1, \dots, x \mod m_n)$.

¹The construction is the same as before—see notes for details.

Chinese Remainder Theorem (CRT): If $y_1, ..., y_n$ are fixed numbers and the moduli $m_1, ..., m_n$ are pairwise coprime (i.e., $gcd(m_i, m_i) = 1$ for all $i \neq j$), then the system

 $x \equiv y_1 \pmod{m_1}$: $x \equiv y_n \pmod{m_n}$

has a unique solution in $\mathbb{Z}/m_1 \cdots m_n \mathbb{Z}^1$.

Why is the solution unique? Consider the map

$$f: \mathbb{Z}/m_1 \cdots m_n \mathbb{Z} \to (\mathbb{Z}/m_1 \mathbb{Z}) \times \cdots \times (\mathbb{Z}/m_n \mathbb{Z})$$

given by $f(x) = (x \mod m_1, \ldots, x \mod m_n)$.

The CRT says that the map is surjective.

¹The construction is the same as before—see notes for details.

Chinese Remainder Theorem (CRT): If $y_1, ..., y_n$ are fixed numbers and the moduli $m_1, ..., m_n$ are pairwise coprime (i.e., $gcd(m_i, m_i) = 1$ for all $i \neq j$), then the system

 $x \equiv y_1 \pmod{m_1}$: $x \equiv y_n \pmod{m_n}$

has a unique solution in $\mathbb{Z}/m_1 \cdots m_n \mathbb{Z}^1$.

Why is the solution unique? Consider the map

$$f: \mathbb{Z}/m_1 \cdots m_n \mathbb{Z} \to (\mathbb{Z}/m_1 \mathbb{Z}) \times \cdots \times (\mathbb{Z}/m_n \mathbb{Z})$$

given by $f(x) = (x \mod m_1, \ldots, x \mod m_n)$.

The CRT says that the map is surjective. But the domain and range are the same size—*f* is a bijection.

¹The construction is the same as before—see notes for details.

For pairs $(a_1, b_1), (a_2, b_2) \in (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, where $gcd(m_1, m_2) = 1$, define addition and multiplication:

$$(a_1, b_1) + (a_2, b_2) := (a_1 + a_2 \mod m_1, b_1 + b_2 \mod m_2),$$

 $(a_1, b_1)(a_2, b_2) := (a_1 a_2 \mod m_1, b_1 b_2 \mod m_2).$

For pairs $(a_1, b_1), (a_2, b_2) \in (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, where $gcd(m_1, m_2) = 1$, define addition and multiplication:

$$(a_1, b_1) + (a_2, b_2) := (a_1 + a_2 \mod m_1, b_1 + b_2 \mod m_2),$$

 $(a_1, b_1)(a_2, b_2) := (a_1 a_2 \mod m_1, b_1 b_2 \mod m_2).$

Consider the map *f* (the CRT map).

For pairs $(a_1, b_1), (a_2, b_2) \in (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, where $gcd(m_1, m_2) = 1$, define addition and multiplication:

$$(a_1, b_1) + (a_2, b_2) := (a_1 + a_2 \mod m_1, b_1 + b_2 \mod m_2),$$

 $(a_1, b_1)(a_2, b_2) := (a_1 a_2 \mod m_1, b_1 b_2 \mod m_2).$

Consider the map *f* (the CRT map). Then, for $x, y \in \mathbb{Z}/m_1 m_2 \mathbb{Z}$,

$$f(x+y) = (x+y \mod m_1, x+y \mod m_2) = (x \mod m_1, x \mod m_2) + (y \mod m_1, y \mod m_2) = f(x) + f(y).$$

For pairs $(a_1, b_1), (a_2, b_2) \in (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, where $gcd(m_1, m_2) = 1$, define addition and multiplication:

$$(a_1, b_1) + (a_2, b_2) := (a_1 + a_2 \mod m_1, b_1 + b_2 \mod m_2),$$

 $(a_1, b_1)(a_2, b_2) := (a_1 a_2 \mod m_1, b_1 b_2 \mod m_2).$

Consider the map *f* (the CRT map). Then, for $x, y \in \mathbb{Z}/m_1 m_2 \mathbb{Z}$,

$$f(x+y) = (x+y \mod m_1, x+y \mod m_2) = (x \mod m_1, x \mod m_2) + (y \mod m_1, y \mod m_2) = f(x) + f(y).$$

What does this say?
For pairs $(a_1, b_1), (a_2, b_2) \in (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, where $gcd(m_1, m_2) = 1$, define addition and multiplication:

$$(a_1, b_1) + (a_2, b_2) := (a_1 + a_2 \mod m_1, b_1 + b_2 \mod m_2),$$

 $(a_1, b_1)(a_2, b_2) := (a_1 a_2 \mod m_1, b_1 b_2 \mod m_2).$

Consider the map *f* (the CRT map). Then, for $x, y \in \mathbb{Z}/m_1 m_2 \mathbb{Z}$,

$$f(x+y) = (x+y \mod m_1, x+y \mod m_2) = (x \mod m_1, x \mod m_2) + (y \mod m_1, y \mod m_2) = f(x) + f(y).$$

What does this say?

• Add
$$x + y$$
 in $\mathbb{Z}/m_1m_2\mathbb{Z}$, then convert to $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

For pairs $(a_1, b_1), (a_2, b_2) \in (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, where $gcd(m_1, m_2) = 1$, define addition and multiplication:

$$(a_1, b_1) + (a_2, b_2) := (a_1 + a_2 \mod m_1, b_1 + b_2 \mod m_2),$$

 $(a_1, b_1)(a_2, b_2) := (a_1 a_2 \mod m_1, b_1 b_2 \mod m_2).$

Consider the map *f* (the CRT map). Then, for $x, y \in \mathbb{Z}/m_1m_2\mathbb{Z}$,

$$f(x+y) = (x+y \mod m_1, x+y \mod m_2) = (x \mod m_1, x \mod m_2) + (y \mod m_1, y \mod m_2) = f(x) + f(y).$$

What does this say?

► Add x + y in $\mathbb{Z}/m_1m_2\mathbb{Z}$, then convert to $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. We get f(x + y).

For pairs $(a_1, b_1), (a_2, b_2) \in (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, where $gcd(m_1, m_2) = 1$, define addition and multiplication:

$$(a_1, b_1) + (a_2, b_2) := (a_1 + a_2 \mod m_1, b_1 + b_2 \mod m_2),$$

 $(a_1, b_1)(a_2, b_2) := (a_1 a_2 \mod m_1, b_1 b_2 \mod m_2).$

Consider the map *f* (the CRT map). Then, for $x, y \in \mathbb{Z}/m_1m_2\mathbb{Z}$,

$$f(x+y) = (x+y \mod m_1, x+y \mod m_2) = (x \mod m_1, x \mod m_2) + (y \mod m_1, y \mod m_2) = f(x) + f(y).$$

What does this say?

- ► Add x + y in $\mathbb{Z}/m_1m_2\mathbb{Z}$, then convert to $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. We get f(x + y).
- Convert x and y to (ℤ/m₁ℤ) × (ℤ/m₂ℤ), then add them as pairs.

For pairs $(a_1, b_1), (a_2, b_2) \in (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, where $gcd(m_1, m_2) = 1$, define addition and multiplication:

$$(a_1, b_1) + (a_2, b_2) := (a_1 + a_2 \mod m_1, b_1 + b_2 \mod m_2),$$

 $(a_1, b_1)(a_2, b_2) := (a_1 a_2 \mod m_1, b_1 b_2 \mod m_2).$

Consider the map *f* (the CRT map). Then, for $x, y \in \mathbb{Z}/m_1m_2\mathbb{Z}$,

$$f(x+y) = (x+y \mod m_1, x+y \mod m_2) = (x \mod m_1, x \mod m_2) + (y \mod m_1, y \mod m_2) = f(x) + f(y).$$

What does this say?

- Add x + y in $\mathbb{Z}/m_1m_2\mathbb{Z}$, then convert to $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. We get f(x + y).
- Convert x and y to (ℤ/m₁ℤ) × (ℤ/m₂ℤ), then add them as pairs. We get f(x) + f(y).

We showed: f(x+y) = f(x) + f(y).

²To learn more about this, take Math 113.

We showed: f(x + y) = f(x) + f(y). Similarly, it holds that f(xy) = f(x)f(y).

 $f(xy) = (xy \mod m_1, xy \mod m_2)$ $= (x \mod m_1, x \mod m_2)(y \mod m_1, y \mod m_2) = f(x)f(y).$

²To learn more about this, take Math 113.

We showed: f(x + y) = f(x) + f(y). Similarly, it holds that f(xy) = f(x)f(y).

$$f(xy) = (xy \mod m_1, xy \mod m_2) = (x \mod m_1, x \mod m_2)(y \mod m_1, y \mod m_2) = f(x)f(y).$$

It does not really matter whether you do addition/multiplication in $\mathbb{Z}/m_1m_2\mathbb{Z}$, or $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

²To learn more about this, take Math 113.

We showed: f(x + y) = f(x) + f(y). Similarly, it holds that f(xy) = f(x)f(y).

 $f(xy) = (xy \mod m_1, xy \mod m_2)$ $= (x \mod m_1, x \mod m_2)(y \mod m_1, y \mod m_2) = f(x)f(y).$

It does not really matter whether you do addition/multiplication in $\mathbb{Z}/m_1m_2\mathbb{Z}$, or $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. They are the same.

²To learn more about this, take Math 113.

We showed: f(x + y) = f(x) + f(y). Similarly, it holds that f(xy) = f(x)f(y).

$$f(xy) = (xy \mod m_1, xy \mod m_2) = (x \mod m_1, x \mod m_2)(y \mod m_1, y \mod m_2) = f(x)f(y).$$

It does not really matter whether you do addition/multiplication in $\mathbb{Z}/m_1m_2\mathbb{Z}$, or $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. They are the same.

This is saying *more* than "bijection"—the bijection *preserves* addition and multiplication.

²To learn more about this, take Math 113.

We showed: f(x + y) = f(x) + f(y). Similarly, it holds that f(xy) = f(x)f(y).

$$f(xy) = (xy \mod m_1, xy \mod m_2) = (x \mod m_1, x \mod m_2)(y \mod m_1, y \mod m_2) = f(x)f(y).$$

It does not really matter whether you do addition/multiplication in $\mathbb{Z}/m_1m_2\mathbb{Z}$, or $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. They are the same.

This is saying *more* than "bijection"—the bijection *preserves* addition and multiplication. Isomorphism.²

$$\mathbb{Z}/m_1m_2\mathbb{Z}\cong(\mathbb{Z}/m_1\mathbb{Z})\times(\mathbb{Z}/m_2\mathbb{Z}).$$

²To learn more about this, take Math 113.

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1 m_2 \mathbb{Z} \cong (\mathbb{Z}/m_1 \mathbb{Z}) \times (\mathbb{Z}/m_2 \mathbb{Z}).$

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1m_2\mathbb{Z} \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. (isomorphism)

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1m_2\mathbb{Z} \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. (isomorphism)

Fact: *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1m_2\mathbb{Z} \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. (isomorphism)

Fact: *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

What does it mean for (a, b) to have an inverse (x, y)?

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1m_2\mathbb{Z} \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. (isomorphism)

Fact: *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

What does it mean for (a, b) to have an inverse (x, y)?

(a,b)(x,y) = (1,1).

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1m_2\mathbb{Z} \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. (isomorphism)

Fact: *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

What does it mean for (a, b) to have an inverse (x, y)?

$$(a,b)(x,y) = (1,1).$$

In $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, (1,1) is the multiplicative identity.

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1m_2\mathbb{Z} \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. (isomorphism)

Fact: *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

What does it mean for (a, b) to have an inverse (x, y)?

$$(a,b)(x,y) = (1,1).$$

In $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, (1, 1) is the multiplicative identity.

So, *a* has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$ if and only if it has an inverse in both $\mathbb{Z}/m_1\mathbb{Z}$ and $\mathbb{Z}/m_2\mathbb{Z}$.

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1m_2\mathbb{Z} \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. (isomorphism)

Fact: *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

What does it mean for (a, b) to have an inverse (x, y)?

$$(a,b)(x,y) = (1,1).$$

In $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, (1, 1) is the multiplicative identity.

So, *a* has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$ if and only if it has an inverse in both $\mathbb{Z}/m_1\mathbb{Z}$ and $\mathbb{Z}/m_2\mathbb{Z}$.

This happens if and only if $gcd(a, m_1) = gcd(a, m_2) = 1$.

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1m_2\mathbb{Z} \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. (isomorphism)

Fact: *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

What does it mean for (a, b) to have an inverse (x, y)?

$$(a,b)(x,y) = (1,1).$$

In $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, (1, 1) is the multiplicative identity.

So, *a* has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$ if and only if it has an inverse in both $\mathbb{Z}/m_1\mathbb{Z}$ and $\mathbb{Z}/m_2\mathbb{Z}$.

This happens if and only if $gcd(a, m_1) = gcd(a, m_2) = 1$. But m_1 and m_2 are pairwise coprime.

CRT: If m_1 and m_2 are coprime, then $\mathbb{Z}/m_1m_2\mathbb{Z} \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$. (isomorphism)

Fact: *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

What does it mean for (a, b) to have an inverse (x, y)?

$$(a,b)(x,y) = (1,1).$$

In $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$, (1, 1) is the multiplicative identity.

So, *a* has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$ if and only if it has an inverse in both $\mathbb{Z}/m_1\mathbb{Z}$ and $\mathbb{Z}/m_2\mathbb{Z}$.

This happens if and only if $gcd(a, m_1) = gcd(a, m_2) = 1$. But m_1 and m_2 are pairwise coprime. So, $gcd(a, m_1m_2) = 1$.

If $gcd(m_1, m_2) = 1$, *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

³To learn more about the Euler totient function, multiplicative functions, and number theory, try Math 115.

If $gcd(m_1, m_2) = 1$, *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

In particular, $|(\mathbb{Z}/m_1m_2\mathbb{Z})^{\times}| = |(\mathbb{Z}/m_1\mathbb{Z})^{\times} \times (\mathbb{Z}/m_2\mathbb{Z})^{\times}|$.

³To learn more about the Euler totient function, multiplicative functions, and number theory, try Math 115.

If $gcd(m_1, m_2) = 1$, *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

In particular, $|(\mathbb{Z}/m_1m_2\mathbb{Z})^{\times}| = |(\mathbb{Z}/m_1\mathbb{Z})^{\times} \times (\mathbb{Z}/m_2\mathbb{Z})^{\times}|$.

The RHS is $|(\mathbb{Z}/m_1\mathbb{Z})^{\times}| \cdot |(\mathbb{Z}/m_2\mathbb{Z})^{\times}|$.

³To learn more about the Euler totient function, multiplicative functions, and number theory, try Math 115.

If $gcd(m_1, m_2) = 1$, *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

In particular, $|(\mathbb{Z}/m_1m_2\mathbb{Z})^{\times}| = |(\mathbb{Z}/m_1\mathbb{Z})^{\times} \times (\mathbb{Z}/m_2\mathbb{Z})^{\times}|$.

The RHS is $|(\mathbb{Z}/m_1\mathbb{Z})^{\times}| \cdot |(\mathbb{Z}/m_2\mathbb{Z})^{\times}|$.

So, for coprime m_1 and m_2 , $\varphi(m_1m_2) = \varphi(m_1)\varphi(m_2)$.

³To learn more about the Euler totient function, multiplicative functions, and number theory, try Math 115.

If $gcd(m_1, m_2) = 1$, *a* has an inverse in $\mathbb{Z}/m_1m_2\mathbb{Z}$ if and only if $(a \mod m_1, a \mod m_2)$ has an inverse in $(\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z})$.

In particular, $|(\mathbb{Z}/m_1m_2\mathbb{Z})^{\times}| = |(\mathbb{Z}/m_1\mathbb{Z})^{\times} \times (\mathbb{Z}/m_2\mathbb{Z})^{\times}|$.

The RHS is $|(\mathbb{Z}/m_1\mathbb{Z})^{\times}| \cdot |(\mathbb{Z}/m_2\mathbb{Z})^{\times}|$.

So, for coprime m_1 and m_2 , $\varphi(m_1m_2) = \varphi(m_1)\varphi(m_2)$.

So, φ is called **multiplicative**. ³

³To learn more about the Euler totient function, multiplicative functions, and number theory, try Math 115.

For $n \ge 2$, write $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ (prime factorization).

For $n \ge 2$, write $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ (prime factorization).

By multiplicativity, $\varphi(n) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_k^{\alpha_k})$.

For $n \ge 2$, write $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ (prime factorization).

By multiplicativity, $\varphi(n) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_k^{\alpha_k})$.

So, what is $\varphi(p^{\alpha})$ for *p* prime and a positive integer α ?

For $n \ge 2$, write $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ (prime factorization).

By multiplicativity, $\varphi(n) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_k^{\alpha_k})$.

So, what is $\varphi(p^{\alpha})$ for *p* prime and a positive integer α ?

There are p^{α} numbers from 1 to p^{α} .

For $n \ge 2$, write $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ (prime factorization).

By multiplicativity, $\varphi(n) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_k^{\alpha_k})$.

So, what is $\varphi(p^{\alpha})$ for *p* prime and a positive integer α ?

There are p^{α} numbers from 1 to p^{α} . How many of them are *not* coprime with p^{α} ?

For $n \ge 2$, write $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ (prime factorization).

By multiplicativity, $\varphi(n) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_k^{\alpha_k})$.

So, what is $\varphi(p^{\alpha})$ for *p* prime and a positive integer α ?

There are p^{α} numbers from 1 to p^{α} . How many of them are *not* coprime with p^{α} ?

 $p, 2p, 3p, ..., p^{\alpha}$.

For $n \ge 2$, write $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ (prime factorization).

By multiplicativity, $\varphi(n) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_k^{\alpha_k})$.

So, what is $\varphi(p^{\alpha})$ for *p* prime and a positive integer α ?

There are p^{α} numbers from 1 to p^{α} . How many of them are *not* coprime with p^{α} ?

 $p, 2p, 3p, \ldots, p^{\alpha}$. There are $p^{\alpha-1}$ of them.

For $n \ge 2$, write $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ (prime factorization).

By multiplicativity, $\varphi(n) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_k^{\alpha_k})$.

So, what is $\varphi(p^{\alpha})$ for *p* prime and a positive integer α ?

There are p^{α} numbers from 1 to p^{α} . How many of them are *not* coprime with p^{α} ?

 $p, 2p, 3p, \dots, p^{\alpha}$. There are $p^{\alpha-1}$ of them. So, $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} = p^{\alpha-1}(p-1).$

For $n \ge 2$, write $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ (prime factorization).

By multiplicativity, $\varphi(n) = \varphi(p_1^{\alpha_1}) \cdots \varphi(p_k^{\alpha_k})$.

So, what is $\varphi(p^{\alpha})$ for *p* prime and a positive integer α ?

There are p^{α} numbers from 1 to p^{α} . How many of them are *not* coprime with p^{α} ?

$$p, 2p, 3p, \dots, p^{\alpha}$$
. There are $p^{\alpha-1}$ of them. So,
 $\varphi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} = p^{\alpha-1}(p-1).$

Thus, $\varphi(n) = \prod_{i=1}^{k} p_i^{\alpha_i - 1} (p_i - 1).$

Using Euler's Theorem for Exponentiation

We can use Euler's Theorem to calculate $5^{1000000} \mod 12$.

Using Euler's Theorem for Exponentiation

We can use Euler's Theorem to calculate $5^{1000000} \mod 12$.

By Euler's Theorem, since gcd(5, 12) = 1, then $5^{\varphi(12)} \equiv 1 \pmod{12}$.
We can use Euler's Theorem to calculate $5^{1000000} \mod 12$.

By Euler's Theorem, since gcd(5, 12) = 1, then $5^{\varphi(12)} \equiv 1 \pmod{12}$.

So,
$$\varphi(12) = \varphi(2^2)\varphi(3) = 2 \cdot 2 = 4$$
.

We can use Euler's Theorem to calculate $5^{1000000} \mod 12$.

By Euler's Theorem, since gcd(5, 12) = 1, then $5^{\varphi(12)} \equiv 1 \pmod{12}$.

So,
$$\varphi(12) = \varphi(2^2)\varphi(3) = 2 \cdot 2 = 4$$
.
In fact, $(\mathbb{Z}/12\mathbb{Z})^{\times} = \{1, 5, 7, 11\}.$

We can use Euler's Theorem to calculate 5¹⁰⁰⁰⁰⁰⁰ mod 12.

By Euler's Theorem, since gcd(5, 12) = 1, then $5^{\varphi(12)} \equiv 1 \pmod{12}$.

So, $\varphi(12) = \varphi(2^2)\varphi(3) = 2 \cdot 2 = 4$.

• In fact,
$$(\mathbb{Z}/12\mathbb{Z})^{\times} = \{1, 5, 7, 11\}.$$

So, write $5^{1000000} \equiv 5^{250000.4} \equiv 1 \pmod{12}$.

We can use Euler's Theorem to calculate 5¹⁰⁰⁰⁰⁰⁰ mod 12.

By Euler's Theorem, since gcd(5, 12) = 1, then $5^{\varphi(12)} \equiv 1 \pmod{12}$.

So, $\varphi(12) = \varphi(2^2)\varphi(3) = 2 \cdot 2 = 4$. In fact, $(\mathbb{Z}/12\mathbb{Z})^{\times} = \{1, 5, 7, 11\}$. So, write $5^{1000000} \equiv 5^{250000 \cdot 4} \equiv 1 \pmod{12}$.

In general, $a^k \equiv a^{k \mod \varphi(m)} \pmod{m}$, if gcd(a, m) = 1.

A polynomial is a function

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0.$$

A polynomial is a function

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0.$$

The integer $d \in \mathbb{N}$ is called the **degree** of the polynomial.

A polynomial is a function

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0.$$

The integer $d \in \mathbb{N}$ is called the **degree** of the polynomial.

► Exception: If P(x) = 0 for all x, the zero polynomial, then the degree is sometimes considered to be -∞.

A polynomial is a function

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0.$$

The integer $d \in \mathbb{N}$ is called the **degree** of the polynomial.

► Exception: If P(x) = 0 for all x, the zero polynomial, then the degree is sometimes considered to be -∞.

The numbers a_0, a_1, \ldots, a_d are the **coefficients**.

A polynomial is a function

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0.$$

The integer $d \in \mathbb{N}$ is called the **degree** of the polynomial.

Exception: If P(x) = 0 for all x, the zero polynomial, then the degree is sometimes considered to be -∞.

The numbers $a_0, a_1, ..., a_d$ are the **coefficients**. We say this is the coefficient representation.

A polynomial is a function

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0.$$

The integer $d \in \mathbb{N}$ is called the **degree** of the polynomial.

Exception: If P(x) = 0 for all x, the zero polynomial, then the degree is sometimes considered to be -∞.

The numbers $a_0, a_1, ..., a_d$ are the **coefficients**. We say this is the coefficient representation.

Polynomials involve addition, multiplication.

A polynomial is a function

$$P(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0.$$

The integer $d \in \mathbb{N}$ is called the **degree** of the polynomial.

Exception: If P(x) = 0 for all x, the zero polynomial, then the degree is sometimes considered to be -∞.

The numbers $a_0, a_1, ..., a_d$ are the **coefficients**. We say this is the coefficient representation.

Polynomials involve addition, multiplication.

• We can also consider polynomials over $\mathbb{Z}/m\mathbb{Z}$.

Polynomials in Modular Arithmetic

What does the polynomial $P(x) = x^2 + 4$ look like, modulo 5?

Polynomials in Modular Arithmetic

What does the polynomial $P(x) = x^2 + 4$ look like, modulo 5?

Polynomials in Modular Arithmetic

What does the polynomial $P(x) = x^2 + 4$ look like, modulo 5?

Not a continuous curve!

Polynomial Degree

Consider polynomials *P* and *Q* of degrees $d_1, d_2 > 0$.

What is the degree of P + Q?

What is the degree of P + Q?

• deg(P + Q) is at most max{ d_1, d_2 }.

What is the degree of P + Q?

- deg(P + Q) is at most max{ d_1, d_2 }.
- Potentially $-\infty$, if P = -Q.

What is the degree of P + Q?

- deg(P + Q) is at most max{ d_1, d_2 }.
- Potentially $-\infty$, if P = -Q.

What is the degree of PQ?

What is the degree of P + Q?

- deg(P + Q) is at most max{ d_1, d_2 }.
- Potentially $-\infty$, if P = -Q.

What is the degree of PQ?

•
$$d_1 + d_2$$
.

Without being too formal, a field is

► a set with two operations, + (addition) and · (multiplication)

- ► a set with two operations, + (addition) and · (multiplication)
- such that addition and multiplication are associative and commutative;

- ► a set with two operations, + (addition) and · (multiplication)
- such that addition and multiplication are associative and commutative;
- multiplication distributes over addition;

- ► a set with two operations, + (addition) and · (multiplication)
- such that addition and multiplication are associative and commutative;
- multiplication distributes over addition;
- every element has an additive inverse;

- ► a set with two operations, + (addition) and · (multiplication)
- such that addition and multiplication are associative and commutative;
- multiplication distributes over addition;
- every element has an additive inverse;
- every non-zero element has a multiplicative inverse.

Without being too formal, a field is

- ► a set with two operations, + (addition) and · (multiplication)
- such that addition and multiplication are associative and commutative;
- multiplication distributes over addition;
- every element has an additive inverse;
- every non-zero element has a multiplicative inverse.

What are some examples of fields?

Without being too formal, a field is

- ► a set with two operations, + (addition) and · (multiplication)
- such that addition and multiplication are associative and commutative;
- multiplication distributes over addition;
- every element has an additive inverse;
- every non-zero element has a multiplicative inverse.

What are some examples of fields?

Without being too formal, a field is

- ► a set with two operations, + (addition) and · (multiplication)
- such that addition and multiplication are associative and commutative;
- multiplication distributes over addition;
- every element has an additive inverse;
- every non-zero element has a multiplicative inverse.

What are some examples of fields?

- ▶ Q, ℝ, ℂ.
- $\mathbb{Z}/p\mathbb{Z}$ where *p* is prime.

Without being too formal, a field is

- a set with two operations, + (addition) and \cdot (multiplication)
- such that addition and multiplication are associative and commutative;
- multiplication distributes over addition;
- every element has an additive inverse;
- every non-zero element has a multiplicative inverse.

What are some examples of fields?

- ▶ Q, ℝ, ℂ.
- $\mathbb{Z}/p\mathbb{Z}$ where *p* is prime.

What is not a field?

Without being too formal, a field is

- ► a set with two operations, + (addition) and · (multiplication)
- such that addition and multiplication are associative and commutative;
- multiplication distributes over addition;
- every element has an additive inverse;
- every non-zero element has a multiplicative inverse.

What are some examples of fields?

- ▶ Q, ℝ, ℂ.
- $\mathbb{Z}/p\mathbb{Z}$ where *p* is prime.

What is not a field?

▶ \mathbb{Z} , $\mathbb{Z}/m\mathbb{Z}$ for *m* composite: missing multiplicative inverses.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

Example: To divide $6x^4 + 4x^3 + 2x + 1$ by 3x + 2:

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

Example: To divide $6x^4 + 4x^3 + 2x + 1$ by 3x + 2:

Match coefficients.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

Example: To divide $6x^4 + 4x^3 + 2x + 1$ by 3x + 2:

• Match coefficients. Multiply 3x + 2 by $2x^3$.
Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

Example: To divide $6x^4 + 4x^3 + 2x + 1$ by 3x + 2:

► Match coefficients. Multiply 3x + 2 by $2x^3$. Then $2x^3(3x+2) = 6x^4 + 4x^3$.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

- ► Match coefficients. Multiply 3x + 2 by $2x^3$. Then $2x^3(3x+2) = 6x^4 + 4x^3$.
- The remaining terms are 2x + 1.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

- ► Match coefficients. Multiply 3x + 2 by $2x^3$. Then $2x^3(3x+2) = 6x^4 + 4x^3$.
- The remaining terms are 2x + 1. Match coefficients.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

- ► Match coefficients. Multiply 3x + 2 by $2x^3$. Then $2x^3(3x+2) = 6x^4 + 4x^3$.
- ► The remaining terms are 2x + 1. Match coefficients. Multiply 3x + 2 by 2/3.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

- Match coefficients. Multiply 3x + 2 by $2x^3$. Then $2x^3(3x+2) = 6x^4 + 4x^3$.
- ► The remaining terms are 2x + 1. Match coefficients. Multiply 3x + 2 by 2/3. (2/3)(3x + 2) = 2x + 4/3.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

- Match coefficients. Multiply 3x + 2 by $2x^3$. Then $2x^3(3x+2) = 6x^4 + 4x^3$.
- ► The remaining terms are 2x + 1. Match coefficients. Multiply 3x + 2 by 2/3. (2/3)(3x + 2) = 2x + 4/3.
- ► So, $(2x^3+2/3)(3x+2) = 6x^4+4x^3+2x+4/3$.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

- Match coefficients. Multiply 3x + 2 by $2x^3$. Then $2x^3(3x+2) = 6x^4 + 4x^3$.
- ► The remaining terms are 2x + 1. Match coefficients. Multiply 3x + 2 by 2/3. (2/3)(3x + 2) = 2x + 4/3.
- ► So, $(2x^3+2/3)(3x+2) = 6x^4+4x^3+2x+4/3$.
- ► So, $6x^4 + 4x^3 + 2x + 1 = (2x^3 + 2/3)(3x + 2) 1/3$.

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with b > 0, then there exist unique $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., b-1\}$ with a = qb + r.

Polynomial Division: Given polynomials *A* and *B* where *B* is not constant, there exist unique polynomials *Q* and *R* with A = QB + R, and deg $R < \deg B$.

Example: To divide $6x^4 + 4x^3 + 2x + 1$ by 3x + 2:

- ► Match coefficients. Multiply 3x + 2 by $2x^3$. Then $2x^3(3x+2) = 6x^4 + 4x^3$.
- ► The remaining terms are 2x + 1. Match coefficients. Multiply 3x + 2 by 2/3. (2/3)(3x + 2) = 2x + 4/3.
- ► So, $(2x^3+2/3)(3x+2) = 6x^4+4x^3+2x+4/3$.
- ► So, $6x^4 + 4x^3 + 2x + 1 = (2x^3 + 2/3)(3x + 2) 1/3$.

The algorithm needs multiplicative inverses—work in a field.

A root of a polynomial P is a value a such that P(a) = 0.

A root of a polynomial *P* is a value *a* such that P(a) = 0.

Theorem: The polynomial *P* has the root *a* if and only if P(x) = (x - a)Q(x) for a polynomial *Q*.

A root of a polynomial *P* is a value *a* such that P(a) = 0.

Theorem: The polynomial *P* has the root *a* if and only if P(x) = (x - a)Q(x) for a polynomial *Q*.

A root of a polynomial *P* is a value *a* such that P(a) = 0.

Theorem: The polynomial *P* has the root *a* if and only if P(x) = (x - a)Q(x) for a polynomial *Q*.

• (
$$\Leftarrow$$
): Plug in $x = a$ to get $P(a) = 0$.

A root of a polynomial P is a value a such that P(a) = 0.

Theorem: The polynomial *P* has the root *a* if and only if P(x) = (x - a)Q(x) for a polynomial *Q*.

- (\Leftarrow): Plug in x = a to get P(a) = 0.
- ► (\implies): By Division Algorithm, P(x) = (x a)Q(x) + R, where deg R < 1.

A root of a polynomial P is a value a such that P(a) = 0.

Theorem: The polynomial *P* has the root *a* if and only if P(x) = (x - a)Q(x) for a polynomial *Q*.

- (\Leftarrow): Plug in x = a to get P(a) = 0.
- ► (\implies): By Division Algorithm, P(x) = (x a)Q(x) + R, where deg R < 1. So, R is a constant.

A root of a polynomial P is a value a such that P(a) = 0.

Theorem: The polynomial *P* has the root *a* if and only if P(x) = (x - a)Q(x) for a polynomial *Q*.

Proof.

- (\Leftarrow): Plug in x = a to get P(a) = 0.
- ► (\implies): By Division Algorithm, P(x) = (x a)Q(x) + R, where deg R < 1. So, R is a constant.

Plug in *x* = *a*.

A root of a polynomial P is a value a such that P(a) = 0.

Theorem: The polynomial *P* has the root *a* if and only if P(x) = (x - a)Q(x) for a polynomial *Q*.

- (\Leftarrow): Plug in x = a to get P(a) = 0.
- ► (\implies): By Division Algorithm, P(x) = (x a)Q(x) + R, where deg R < 1. So, R is a constant.
- ▶ Plug in x = a. 0 = P(a) = R. \Box

Theorem: If a non-zero polynomial P is degree d, it has at most d roots.

Theorem: If a non-zero polynomial P is degree d, it has at most d roots.

Theorem: If a non-zero polynomial P is degree d, it has at most d roots.

Proof.

► If *a* is a root of *P*, then factor P(x) = (x - a)Q(x).

Theorem: If a non-zero polynomial P is degree d, it has at most d roots.

- ► If *a* is a root of *P*, then factor P(x) = (x a)Q(x).
- Each root we factor out reduces the degree of the remaining polynomial by 1.

Theorem: If a non-zero polynomial P is degree d, it has at most d roots.

- ► If *a* is a root of *P*, then factor P(x) = (x a)Q(x).
- Each root we factor out reduces the degree of the remaining polynomial by 1.
- Since P has degree d, we can only factor out at most d roots.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

• P = Q if every coefficient is the same.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

- P = Q if every coefficient is the same.
- ► P = Q as functions: P = Q if P(x) = Q(x) for every $x \in \mathbb{Z}/p\mathbb{Z}$.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

- P = Q if every coefficient is the same.
- ► P = Q as functions: P = Q if P(x) = Q(x) for every $x \in \mathbb{Z}/p\mathbb{Z}$.

By the first definition, there are infinitely many distinct polynomials.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

- P = Q if every coefficient is the same.
- ► P = Q as functions: P = Q if P(x) = Q(x) for every $x \in \mathbb{Z}/p\mathbb{Z}$.

By the first definition, there are infinitely many distinct polynomials.

By the second definition, there are only finitely many polynomials.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

- P = Q if every coefficient is the same.
- ► P = Q as functions: P = Q if P(x) = Q(x) for every $x \in \mathbb{Z}/p\mathbb{Z}$.

By the first definition, there are infinitely many distinct polynomials.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

- P = Q if every coefficient is the same.
- ► P = Q as functions: P = Q if P(x) = Q(x) for every $x \in \mathbb{Z}/p\mathbb{Z}$.

By the first definition, there are infinitely many distinct polynomials.

By the second definition, there are only finitely many polynomials. There are finitely many functions $\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$.

There are p possible outputs for the first input.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

- P = Q if every coefficient is the same.
- ► P = Q as functions: P = Q if P(x) = Q(x) for every $x \in \mathbb{Z}/p\mathbb{Z}$.

By the first definition, there are infinitely many distinct polynomials.

- There are p possible outputs for the first input.
- Then p possible outputs for the second input.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

- P = Q if every coefficient is the same.
- ► P = Q as functions: P = Q if P(x) = Q(x) for every $x \in \mathbb{Z}/p\mathbb{Z}$.

By the first definition, there are infinitely many distinct polynomials.

- There are p possible outputs for the first input.
- Then p possible outputs for the second input.
- ... and p possible outputs for the pth input.

Consider polynomials *P* and *Q* over $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Two definitions of equality:

- P = Q if every coefficient is the same.
- ► P = Q as functions: P = Q if P(x) = Q(x) for every $x \in \mathbb{Z}/p\mathbb{Z}$.

By the first definition, there are infinitely many distinct polynomials.

- There are p possible outputs for the first input.
- Then p possible outputs for the second input.
- ... and p possible outputs for the pth input.
- There are p^p functions $\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$.

Say we are given d + 1 points $(x_1, y_1), ..., (x_{d+1}, y_{d+1})$.

Say we are given d + 1 points $(x_1, y_1), ..., (x_{d+1}, y_{d+1})$.

Can we find a polynomial that goes through these points?

Say we are given d + 1 points $(x_1, y_1), ..., (x_{d+1}, y_{d+1})$.

Can we find a polynomial that goes through these points?

A degree *d* polynomial has the representation $P(x) = a_d x^d + \cdots + a_1 x + a_0$.

Say we are given d + 1 points $(x_1, y_1), ..., (x_{d+1}, y_{d+1})$.

Can we find a polynomial that goes through these points?

A degree *d* polynomial has the representation $P(x) = a_d x^d + \dots + a_1 x + a_0.$ Try solving the system:

$$y_1 = a_d x_1^d + \dots + a_1 x_1 + a_0$$

:
 $y_{d+1} = a_d x_{d+1}^d + \dots + a_1 x_{d+1} + a_0$
Say we are given d + 1 points $(x_1, y_1), ..., (x_{d+1}, y_{d+1})$.

Can we find a polynomial that goes through these points?

A degree *d* polynomial has the representation $P(x) = a_d x^d + \dots + a_1 x + a_0.$ Try solving the system:

$$y_{1} = a_{d}x_{1}^{d} + \dots + a_{1}x_{1} + a_{0}$$

:
$$y_{d+1} = a_{d}x_{d+1}^{d} + \dots + a_{1}x_{d+1} + a_{0}$$

There are d + 1 equations, d + 1 unknown coefficients.

Say we are given d + 1 points $(x_1, y_1), ..., (x_{d+1}, y_{d+1})$.

Can we find a polynomial that goes through these points?

A degree *d* polynomial has the representation $P(x) = a_d x^d + \dots + a_1 x + a_0.$ Try solving the system:

$$y_{1} = a_{d} x_{1}^{d} + \dots + a_{1} x_{1} + a_{0}$$

:
$$y_{d+1} = a_{d} x_{d+1}^{d} + \dots + a_{1} x_{d+1} + a_{0}$$

There are d + 1 equations, d + 1 unknown coefficients. The system is linear.

Say we are given d + 1 points $(x_1, y_1), ..., (x_{d+1}, y_{d+1})$.

Can we find a polynomial that goes through these points?

A degree *d* polynomial has the representation $P(x) = a_d x^d + \dots + a_1 x + a_0.$ Try solving the system:

$$y_{1} = a_{d}x_{1}^{d} + \dots + a_{1}x_{1} + a_{0}$$

:
$$y_{d+1} = a_{d}x_{d+1}^{d} + \dots + a_{1}x_{d+1} + a_{0}$$

There are d + 1 equations, d + 1 unknown coefficients. The system is linear.

Try solving this system with linear algebra.

Remember CRT?

Remember CRT? To solve

$$x \equiv y_1 \pmod{m_1}$$
$$x \equiv y_2 \pmod{m_2}$$

find Δ_1 and Δ_2 so that

$$\begin{array}{ll} \Delta_1 \equiv 1 \pmod{m_1} & \Delta_2 \equiv 0 \pmod{m_1} \\ \Delta_1 \equiv 0 \pmod{m_2} & \Delta_2 \equiv 1 \pmod{m_2} \end{array}$$

and then take $x = y_1 \Delta_1 + y_2 \Delta_2$.

Remember CRT? To solve

$$\begin{array}{ll} x \equiv y_1 \pmod{m_1} \\ x \equiv y_2 \pmod{m_2} \end{array}$$

find Δ_1 and Δ_2 so that

$$\begin{array}{ll} \Delta_1 \equiv 1 \pmod{m_1} & \Delta_2 \equiv 0 \pmod{m_1} \\ \Delta_1 \equiv 0 \pmod{m_2} & \Delta_2 \equiv 1 \pmod{m_2} \end{array}$$

and then take $x = y_1 \Delta_1 + y_2 \Delta_2$.

Same idea for polynomials.

Remember CRT? To solve

$$\begin{array}{ll} x \equiv y_1 \pmod{m_1} \\ x \equiv y_2 \pmod{m_2} \end{array}$$

find Δ_1 and Δ_2 so that

$$\begin{array}{lll} \Delta_1 \equiv 1 \pmod{m_1} & \Delta_2 \equiv 0 \pmod{m_1} \\ \Delta_1 \equiv 0 \pmod{m_2} & \Delta_2 \equiv 1 \pmod{m_2} \end{array}$$

and then take $x = y_1 \Delta_1 + y_2 \Delta_2$.

Same idea for polynomials. For i = 1, ..., d + 1, we want:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

Remember CRT? To solve

$$\begin{array}{ll} x \equiv y_1 \pmod{m_1} \\ x \equiv y_2 \pmod{m_2} \end{array}$$

find Δ_1 and Δ_2 so that

$$\begin{array}{ll} \Delta_1 \equiv 1 \pmod{m_1} & \Delta_2 \equiv 0 \pmod{m_1} \\ \Delta_1 \equiv 0 \pmod{m_2} & \Delta_2 \equiv 1 \pmod{m_2} \end{array}$$

and then take $x = y_1 \Delta_1 + y_2 \Delta_2$.

Same idea for polynomials. For i = 1, ..., d + 1, we want:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

and then $P(x) = \sum_{i=1}^{d+1} y_i \Delta_i(x)$.

Picture of Lagrange Interpolation

Consider points (0,2), (1,3), and (2,0) in $\mathbb{Z}/5\mathbb{Z}$.

Picture of Lagrange Interpolation

Consider points (0,2), (1,3), and (2,0) in $\mathbb{Z}/5\mathbb{Z}$.

Picture of Lagrange Interpolation

Consider points (0,2), (1,3), and (2,0) in $\mathbb{Z}/5\mathbb{Z}$.

Here, $P(x) = 2 \cdot \Delta_1(x) + 3 \cdot \Delta_2(x)$.

Constructing Δ Polynomials

For distinct points x_1, \ldots, x_{d+1} , construct:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

Constructing Δ Polynomials

For distinct points x_1, \ldots, x_{d+1} , construct:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

How?

For distinct points x_1, \ldots, x_{d+1} , construct:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

How? First, consider the polynomial

$$Q(x)=\prod_{j\neq i}(x-x_j).$$

For distinct points x_1, \ldots, x_{d+1} , construct:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

How? First, consider the polynomial

$$Q(x)=\prod_{j\neq i}(x-x_j).$$

This polynomial is zero at all x_j , $j \neq i$.

For distinct points x_1, \ldots, x_{d+1} , construct:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

How? First, consider the polynomial

$$Q(x)=\prod_{j\neq i}(x-x_j).$$

This polynomial is zero at all x_j , $j \neq i$. Now set:

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j\neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j\neq i} (\mathbf{x}_i - \mathbf{x}_j)}.$$

For distinct points x_1, \ldots, x_{d+1} , construct:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

How? First, consider the polynomial

$$Q(x)=\prod_{j\neq i}(x-x_j).$$

This polynomial is zero at all x_j , $j \neq i$. Now set:

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j \neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j \neq i} (\mathbf{x}_i - \mathbf{x}_j)}.$$

This polynomial satisfies the required conditions.

For distinct points x_1, \ldots, x_{d+1} , construct:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

How? First, consider the polynomial

$$Q(x)=\prod_{j\neq i}(x-x_j).$$

This polynomial is zero at all x_j , $j \neq i$. Now set:

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

This polynomial satisfies the required conditions. (Note: Division requires a field.)

For distinct points x_1, \ldots, x_{d+1} , construct:

$$\Delta_i(x_j) = \begin{cases} 1, & j=i\\ 0, & j\neq i \end{cases}$$

How? First, consider the polynomial

$$Q(x)=\prod_{j\neq i}(x-x_j).$$

This polynomial is zero at all x_j , $j \neq i$. Now set:

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j \neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j \neq i} (\mathbf{x}_i - \mathbf{x}_j)}.$$

This polynomial satisfies the required conditions. (Note: Division requires a field.) Also, $\deg \Delta_i = d$.

Theorem: Given $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$, where x_1, \ldots, x_{d+1} are *distinct*, there is a *unique* polynomial *P* of degree at most *d* going through these points.

Theorem: Given $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$, where x_1, \ldots, x_{d+1} are *distinct*, there is a *unique* polynomial *P* of degree at most *d* going through these points.

Theorem: Given $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$, where x_1, \ldots, x_{d+1} are *distinct*, there is a *unique* polynomial *P* of degree at most *d* going through these points.

Proof.

Existence: We constructed the polynomial using Lagrange interpolation!

Theorem: Given $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$, where x_1, \ldots, x_{d+1} are *distinct*, there is a *unique* polynomial *P* of degree at most *d* going through these points.

- Existence: We constructed the polynomial using Lagrange interpolation!
- Each Δ_i has degree at most d, so deg $P \leq d$.

Theorem: Given $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$, where x_1, \ldots, x_{d+1} are *distinct*, there is a *unique* polynomial *P* of degree at most *d* going through these points.

- Existence: We constructed the polynomial using Lagrange interpolation!
- Each Δ_i has degree at most d, so deg $P \leq d$.
- Uniqueness: Say that P₁ and P₂ both go through these points.

Theorem: Given $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$, where x_1, \ldots, x_{d+1} are *distinct*, there is a *unique* polynomial *P* of degree at most *d* going through these points.

- Existence: We constructed the polynomial using Lagrange interpolation!
- Each Δ_i has degree at most d, so deg $P \leq d$.
- ► Uniqueness: Say that P₁ and P₂ both go through these points. Then, P₁ P₂ has d + 1 roots, x₁,...,x_{d+1}.

Theorem: Given $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$, where x_1, \ldots, x_{d+1} are *distinct*, there is a *unique* polynomial *P* of degree at most *d* going through these points.

- Existence: We constructed the polynomial using Lagrange interpolation!
- Each Δ_i has degree at most d, so deg $P \leq d$.
- ► Uniqueness: Say that P₁ and P₂ both go through these points. Then, P₁ P₂ has d+1 roots, x₁,..., x_{d+1}.
- Since P₁ − P₂ has degree at most d, then P₁ − P₂ must be the zero polynomial, i.e., P₁ = P₂.

Theorem: Given $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$, where x_1, \ldots, x_{d+1} are *distinct*, there is a *unique* polynomial *P* of degree at most *d* going through these points.

Proof.

- Existence: We constructed the polynomial using Lagrange interpolation!
- Each Δ_i has degree at most d, so deg $P \leq d$.
- ► Uniqueness: Say that P₁ and P₂ both go through these points. Then, P₁ P₂ has d+1 roots, x₁,..., x_{d+1}.
- Since P₁ − P₂ has degree at most d, then P₁ − P₂ must be the zero polynomial, i.e., P₁ = P₂.

Slogan: d + 1 points uniquely determine a degree $\leq d$ polynomial.

Summary

- ► CRT: Z/m₁ ··· m_nZ and (Z/m₁Z) ×··· × (Z/m_nZ) are isomorphic if m₁,..., m_n are pairwise coprime.
- If gcd(m₁, m₂) = 1, then φ(m₁m₂) = φ(m₁)φ(m₂) (φ is multiplicative).
- ► Thus, $\varphi(p_1^{\alpha_1} \cdots p_k^{\alpha_k}) = \prod_{i=1}^k p_i^{\alpha_i 1} (p_i 1)$ for a prime factorization.
- We work over fields: Q, R, C, Z/pZ (AKA GF(p)) for p prime.
- A polynomial has a root *a* if and only if P(x) = (x a)Q(x) for some polynomial *Q*.
- A polynomial of degree *d* has at most *d* roots.
- ► Lagrange Interpolation: d+1 distinct points uniquely determine a degree ≤ d polynomial.