
Communicating with Errors

We learned how to encrypt communication so that an
eavesdropper cannot find out your personal information.

What if your enemy is not an eavesdropper, but nature?

Soon, we will learn how to send messages reliably, even when
nature is deleting parts of your message.

Today: We finish modular arithmetic and learn about
polynomials.
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Composite Moduli

Look at a composite modulus, Z/35Z.

Here, 35 = 5 ·7.

How is Z/35Z related to Z/5Z and Z/7Z?

Take a number in Z/35Z, e.g., 24.
I In Z/5Z, we have 24≡ 4 (mod 5).
I In Z/7Z, we have 24≡ 3 (mod 7).

So, we have 24 = (4 in Z/5Z, 3 in Z/7Z).
I From (4,3), can we go back to 24?
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Solving Modular Congruences

Does the system

x ≡ 4 (mod 5)

x ≡ 3 (mod 7)

have a solution in Z/35Z?

Manual way of finding the solution: first, list all numbers which
are equal to 3, modulo 7.

I 3, 10, 17, 24, 31.
The highlighted number also equals 4, modulo 5.

Does a solution always exist?
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Chinese Remainder Theorem
Idea: Construct numbers ∆1 and ∆2 so that:

∆1 ≡ 1 (mod 5) ∆2 ≡ 0 (mod 5)

∆1 ≡ 0 (mod 7) ∆2 ≡ 1 (mod 7)

Then, we can check that 4 ·∆1 + 3 ·∆2 satisfies

x ≡ 4 (mod 5) and x ≡ 3 (mod 7).

To construct ∆1:
I Any multiple of 7 is 0 modulo 7.
I So consider ∆1 = 7 · (7−1 mod 5). This satisfies

∆1 ≡ 1 mod 5.
I Here, 7−1 mod 5 = 2−1 mod 5 = 3. So, ∆1 = 21.
I Similarly, ∆2 = 5 · (5−1 mod 7) = 15.
I So, x = 4 ·21 + 3 ·15 = 129. . . which equals 24, modulo 35.

This requires gcd(5,7) = 1.
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Chinese Remainder Theorem
Chinese Remainder Theorem (CRT): If y1, . . . ,yn are fixed
numbers and the moduli m1, . . . ,mn are pairwise coprime (i.e.,
gcd(mi ,mj) = 1 for all i 6= j), then the system

x ≡ y1 (mod m1)

...
x ≡ yn (mod mn)

has a unique solution in Z/m1 · · ·mnZ.1

I Why is the solution unique? Consider the map

f : Z/m1 · · ·mnZ→ (Z/m1Z)×·· ·× (Z/mnZ)

given by f (x) = (x mod m1, . . . ,x mod mn).
I The CRT says that the map is surjective. But the domain

and range are the same size—f is a bijection.

1The construction is the same as before—see notes for details.
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Isomorphism
For pairs (a1,b1),(a2,b2) ∈ (Z/m1Z)× (Z/m2Z), where
gcd(m1,m2) = 1, define addition and multiplication:

(a1,b1) + (a2,b2) := (a1 + a2 mod m1, b1 + b2 mod m2),

(a1,b1)(a2,b2) := (a1a2 mod m1, b1b2 mod m2).

Consider the map f (the CRT map). Then, for x ,y ∈ Z/m1m2Z,

f (x + y) = (x + y mod m1, x + y mod m2)

= (x mod m1, x mod m2) + (y mod m1, y mod m2)

= f (x) + f (y).

What does this say?
I Add x + y in Z/m1m2Z, then convert to

(Z/m1Z)× (Z/m2Z). We get f (x + y).
I Convert x and y to (Z/m1Z)× (Z/m2Z), then add them as

pairs. We get f (x) + f (y).
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Isomorphism

We showed: f (x + y) = f (x) + f (y).

Similarly, it holds that
f (xy) = f (x)f (y).

f (xy) = (xy mod m1, xy mod m2)

= (x mod m1, x mod m2)(y mod m1, y mod m2) = f (x)f (y).

It does not really matter whether you do addition/multiplication
in Z/m1m2Z, or (Z/m1Z)× (Z/m2Z). They are the same.

This is saying more than “bijection”—the bijection preserves
addition and multiplication. Isomorphism. 2

Z/m1m2Z∼= (Z/m1Z)× (Z/m2Z).

2To learn more about this, take Math 113.
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Consequences of Isomorphism

CRT: If m1 and m2 are coprime, then
Z/m1m2Z∼= (Z/m1Z)× (Z/m2Z).

(isomorphism)

Fact: a has an inverse in Z/m1m2Z if and only if
(a mod m1, a mod m2) has an inverse in (Z/m1Z)× (Z/m2Z).

What does it mean for (a,b) to have an inverse (x ,y)?

(a,b)(x ,y) = (1,1).

In (Z/m1Z)× (Z/m2Z), (1,1) is the multiplicative identity.

So, a has an inverse in (Z/m1Z)× (Z/m2Z) if and only if it has
an inverse in both Z/m1Z and Z/m2Z.

This happens if and only if gcd(a,m1) = gcd(a,m2) = 1. But m1
and m2 are pairwise coprime. So, gcd(a,m1m2) = 1.
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CRT, Euler’s Totient Function

If gcd(m1,m2) = 1, a has an inverse in Z/m1m2Z if and only if
(a mod m1,a mod m2) has an inverse in (Z/m1Z)× (Z/m2Z).

In particular, |(Z/m1m2Z)×|= |(Z/m1Z)×× (Z/m2Z)×|.

The RHS is |(Z/m1Z)×| · |(Z/m2Z)×|.

So, for coprime m1 and m2, ϕ(m1m2) = ϕ(m1)ϕ(m2).

So, ϕ is called multiplicative. 3

3To learn more about the Euler totient function, multiplicative functions,
and number theory, try Math 115.
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Formula for Euler’s Totient Function

For n ≥ 2, write n = pα1
1 · · ·p

αk
k (prime factorization).

By multiplicativity, ϕ(n) = ϕ(pα1
1 ) · · ·ϕ(pαk

k ).

So, what is ϕ(pα ) for p prime and a positive integer α?

There are pα numbers from 1 to pα . How many of them are not
coprime with pα?

p,2p,3p, . . . ,pα . There are pα−1 of them. So,
ϕ(pα ) = pα −pα−1 = pα−1(p−1).

Thus, ϕ(n) = ∏
k
i=1 pαi−1

i (pi −1).
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Using Euler’s Theorem for Exponentiation

We can use Euler’s Theorem to calculate 51000000 mod 12.

By Euler’s Theorem, since gcd(5,12) = 1, then 5ϕ(12) ≡ 1
(mod 12).

So, ϕ(12) = ϕ(22)ϕ(3) = 2 ·2 = 4.
I In fact, (Z/12Z)× = {1,5,7,11}.

So, write 51000000 ≡ 5250000·4 ≡ 1 (mod 12).

In general, ak ≡ ak mod ϕ(m) (mod m), if gcd(a,m) = 1.
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So, write 51000000 ≡ 5250000·4 ≡ 1 (mod 12).

In general, ak ≡ ak mod ϕ(m) (mod m), if gcd(a,m) = 1.



Polynomials

A polynomial is a function

P(x) = adxd + ad−1xd−1 + · · ·+ a1x + a0.

The integer d ∈ N is called the degree of the polynomial.
I Exception: If P(x) = 0 for all x , the zero polynomial, then

the degree is sometimes considered to be −∞.

The numbers a0,a1, . . . ,ad are the coefficients. We say this is
the coefficient representation.

Polynomials involve addition, multiplication.
I We can also consider polynomials over Z/mZ.
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What does the polynomial P(x) = x2 + 4 look like, modulo 5?
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Not a continuous curve!
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Polynomial Degree

Consider polynomials P and Q of degrees d1,d2 > 0.

What is the degree of P + Q?
I deg(P + Q) is at most max{d1,d2}.
I Potentially −∞, if P =−Q.

What is the degree of PQ?
I d1 + d2.
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Fields

Without being too formal, a field is

I a set with two operations, + (addition) and · (multiplication)
I such that addition and multiplication are associative and

commutative;
I multiplication distributes over addition;
I every element has an additive inverse;
I every non-zero element has a multiplicative inverse.

What are some examples of fields?
I Q, R, C.
I Z/pZ where p is prime.

What is not a field?
I Z, Z/mZ for m composite: missing multiplicative inverses.
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Polynomial Long Division

Recall the Division Algorithm: Given a,b ∈ Z with b > 0, then
there exist unique q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = qb + r .

Polynomial Division: Given polynomials A and B where B is
not constant, there exist unique polynomials Q and R with
A = QB + R, and degR < degB.

Example: To divide 6x4 + 4x3 + 2x + 1 by 3x + 2:
I Match coefficients. Multiply 3x + 2 by 2x3. Then

2x3(3x + 2) = 6x4 + 4x3.
I The remaining terms are 2x + 1. Match coefficients.

Multiply 3x + 2 by 2/3. (2/3)(3x + 2) = 2x + 4/3.
I So, (2x3 + 2/3)(3x + 2) = 6x4 + 4x3 + 2x + 4/3.
I So, 6x4 + 4x3 + 2x + 1 = (2x3 + 2/3)(3x + 2)−1/3.

The algorithm needs multiplicative inverses—work in a field.
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Polynomial Roots

A root of a polynomial P is a value a such that P(a) = 0.

Theorem: The polynomial P has the root a if and only if
P(x) = (x−a)Q(x) for a polynomial Q.

Proof.
I (⇐= ): Plug in x = a to get P(a) = 0.
I ( =⇒ ): By Division Algorithm, P(x) = (x−a)Q(x) + R,

where degR < 1. So, R is a constant.
I Plug in x = a. 0 = P(a) = R.
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Degree d Has At Most d Roots

Theorem: If a non-zero polynomial P is degree d , it has at
most d roots.

Proof.
I If a is a root of P, then factor P(x) = (x−a)Q(x).
I Each root we factor out reduces the degree of the

remaining polynomial by 1.
I Since P has degree d , we can only factor out at most d

roots.
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Polynomials vs. Functions
Consider polynomials P and Q over Z/pZ for p prime.

Two definitions of equality:
I P = Q if every coefficient is the same.
I P = Q as functions: P = Q if P(x) = Q(x) for every

x ∈ Z/pZ.

By the first definition, there are infinitely many distinct
polynomials.

By the second definition, there are only finitely many
polynomials. There are finitely many functions Z/pZ→ Z/pZ.

I There are p possible outputs for the first input.
I Then p possible outputs for the second input.
I . . . and p possible outputs for the pth input.
I There are pp functions Z/pZ→ Z/pZ.
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Polynomial Interpolation

Say we are given d + 1 points (x1,y1), . . . ,(xd+1,yd+1).

Can we find a polynomial that goes through these points?

A degree d polynomial has the representation
P(x) = adxd + · · ·+ a1x + a0.

Try solving the system:

y1 = adxd
1 + · · ·+ a1x1 + a0

...

yd+1 = adxd
d+1 + · · ·+ a1xd+1 + a0

There are d + 1 equations, d + 1 unknown coefficients. The
system is linear.

I Try solving this system with linear algebra.
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Lagrange Interpolation
Remember CRT?

To solve

x ≡ y1 (mod m1)

x ≡ y2 (mod m2)

find ∆1 and ∆2 so that

∆1 ≡ 1 (mod m1) ∆2 ≡ 0 (mod m1)

∆1 ≡ 0 (mod m2) ∆2 ≡ 1 (mod m2)

and then take x = y1∆1 + y2∆2.

Same idea for polynomials. For i = 1, . . . ,d + 1, we want:

∆i(xj) =

{
1, j = i
0, j 6= i

and then P(x) = ∑
d+1
i=1 yi∆i(x).
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Picture of Lagrange Interpolation
Consider points (0,2), (1,3), and (2,0) in Z/5Z.
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4

P(x) = 3x2 + 3x + 2

Here, P(x) = 2 ·∆1(x) + 3 ·∆2(x).
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1

∆1(x) = 3x2 + x + 1
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∆2(x) = 4x2 + 2x
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1

∆3(x) = 3x2 + 2x
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Constructing ∆ Polynomials

For distinct points x1, . . . ,xd+1, construct:

∆i(xj) =

{
1, j = i
0, j 6= i

How? First, consider the polynomial

Q(x) = ∏
j 6=i

(x−xj).

This polynomial is zero at all xj , j 6= i . Now set:

∆i(x) =
∏j 6=i(x−xj)

∏j 6=i(xi −xj)
.

This polynomial satisfies the required conditions. (Note:
Division requires a field.) Also, deg ∆i = d .
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Polynomial Interpolation

Theorem: Given (x1,y1), . . . ,(xd+1,yd+1), where x1, . . . ,xd+1
are distinct, there is a unique polynomial P of degree at most d
going through these points.

Proof.
I Existence: We constructed the polynomial using Lagrange

interpolation!
I Each ∆i has degree at most d , so degP ≤ d .
I Uniqueness: Say that P1 and P2 both go through these

points. Then, P1−P2 has d + 1 roots, x1, . . . ,xd+1.
I Since P1−P2 has degree at most d , then P1−P2 must be

the zero polynomial, i.e., P1 = P2.

Slogan: d + 1 points uniquely determine a degree ≤ d
polynomial.
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Summary

I CRT: Z/m1 · · ·mnZ and (Z/m1Z)×·· ·× (Z/mnZ) are
isomorphic if m1, . . . ,mn are pairwise coprime.

I If gcd(m1,m2) = 1, then ϕ(m1m2) = ϕ(m1)ϕ(m2) (ϕ is
multiplicative).

I Thus, ϕ(pα1
1 · · ·p

αk
k ) = ∏

k
i=1 pαi−1

i (pi −1) for a prime
factorization.

I We work over fields: Q, R, C, Z/pZ (AKA GF(p)) for p
prime.

I A polynomial has a root a if and only if P(x) = (x−a)Q(x)
for some polynomial Q.

I A polynomial of degree d has at most d roots.
I Lagrange Interpolation: d + 1 distinct points uniquely

determine a degree ≤ d polynomial.


