Communicating with Errors

We learned how to encrypt communication so that an eavesdropper cannot find out your personal information.

What if your enemy is not an eavesdropper, but nature?
Soon, we will learn how to send messages reliably, even when nature is deleting parts of your message.

Today: We finish modular arithmetic and learn about polynomials.

Composite Moduli

Look at a composite modulus, $\mathbb{Z} / 35 \mathbb{Z}$. Here, $35=5 \cdot 7$.
How is $\mathbb{Z} / 35 \mathbb{Z}$ related to $\mathbb{Z} / 5 \mathbb{Z}$ and $\mathbb{Z} / 7 \mathbb{Z}$?
Take a number in $\mathbb{Z} / 35 \mathbb{Z}$, e.g., 24.

- In $\mathbb{Z} / 5 \mathbb{Z}$, we have $24 \equiv 4(\bmod 5)$.
- $\ln \mathbb{Z} / 7 \mathbb{Z}$, we have $24 \equiv 3(\bmod 7)$.

So, we have $24=(4$ in $\mathbb{Z} / 5 \mathbb{Z}, 3$ in $\mathbb{Z} / 7 \mathbb{Z})$.

- From $(4,3)$, can we go back to 24 ?

Solving Modular Congruences

Does the system

$$
\begin{array}{ll}
x \equiv 4 & (\bmod 5) \\
x \equiv 3 & (\bmod 7)
\end{array}
$$

have a solution in $\mathbb{Z} / 35 \mathbb{Z}$?
Manual way of finding the solution: first, list all numbers which are equal to 3 , modulo 7 .

- $3,10,17,24,31$.

The highlighted number also equals 4 , modulo 5 .
Does a solution always exist?

Chinese Remainder Theorem

Idea: Construct numbers Δ_{1} and Δ_{2} so that:

$$
\begin{array}{llll}
\Delta_{1} \equiv 1 & (\bmod 5) & \Delta_{2} \equiv 0 & (\bmod 5) \\
\Delta_{1} \equiv 0 & (\bmod 7) & \Delta_{2} \equiv 1 & (\bmod 7)
\end{array}
$$

Then, we can check that $4 \cdot \Delta_{1}+3 \cdot \Delta_{2}$ satisfies

$$
x \equiv 4 \quad(\bmod 5) \quad \text { and } \quad x \equiv 3 \quad(\bmod 7)
$$

To construct Δ_{1} :

- Any multiple of 7 is 0 modulo 7 .
- So consider $\Delta_{1}=7 \cdot\left(7^{-1} \bmod 5\right)$. This satisfies $\Delta_{1} \equiv 1 \bmod 5$.
- Here, $7^{-1} \bmod 5=2^{-1} \bmod 5=3$. So, $\Delta_{1}=21$.
- Similarly, $\Delta_{2}=5 \cdot\left(5^{-1} \bmod 7\right)=15$.
- So, $x=4 \cdot 21+3 \cdot 15=129$. . . which equals 24 , modulo 35 .

This requires $\operatorname{gcd}(5,7)=1$.

Chinese Remainder Theorem

Chinese Remainder Theorem (CRT): If y_{1}, \ldots, y_{n} are fixed numbers and the moduli m_{1}, \ldots, m_{n} are pairwise coprime (i.e., $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$ for all $\left.i \neq j\right)$, then the system

$$
x \equiv y_{1} \quad\left(\bmod m_{1}\right)
$$

$$
x \equiv y_{n} \quad\left(\bmod m_{n}\right)
$$

has a unique solution in $\mathbb{Z} / m_{1} \cdots m_{n} \mathbb{Z}$. ${ }^{1}$

- Why is the solution unique? Consider the map

$$
f: \mathbb{Z} / m_{1} \cdots m_{n} \mathbb{Z} \rightarrow\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / m_{n} \mathbb{Z}\right)
$$

given by $f(x)=\left(x \bmod m_{1}, \ldots, x \bmod m_{n}\right)$.

- The CRT says that the map is surjective. But the domain and range are the same size- f is a bijection.

[^0]
Isomorphism

For pairs $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$, where $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, define addition and multiplication:

$$
\begin{aligned}
\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right) & :=\left(a_{1}+a_{2} \bmod m_{1}, b_{1}+b_{2} \bmod m_{2}\right), \\
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) & :=\left(a_{1} a_{2} \bmod m_{1}, b_{1} b_{2} \bmod m_{2}\right) .
\end{aligned}
$$

Consider the map f (the CRT map). Then, for $x, y \in \mathbb{Z} / m_{1} m_{2} \mathbb{Z}$,

$$
\begin{aligned}
f(x+y) & =\left(x+y \bmod m_{1}, x+y \bmod m_{2}\right) \\
& =\left(x \bmod m_{1}, x \bmod m_{2}\right)+\left(y \bmod m_{1}, y \bmod m_{2}\right) \\
& =f(x)+f(y) .
\end{aligned}
$$

What does this say?

- Add $x+y$ in $\mathbb{Z} / m_{1} m_{2} \mathbb{Z}$, then convert to $\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$. We get $f(x+y)$.
- Convert x and y to $\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$, then add them as pairs. We get $f(x)+f(y)$.

Isomorphism

We showed: $f(x+y)=f(x)+f(y)$. Similarly, it holds that $f(x y)=f(x) f(y)$.
$f(x y)=\left(x y \bmod m_{1}, x y \bmod m_{2}\right)$
$=\left(x \bmod m_{1}, x \bmod m_{2}\right)\left(y \bmod m_{1}, y \bmod m_{2}\right)=f(x) f(y)$.
It does not really matter whether you do addition/multiplication in $\mathbb{Z} / m_{1} m_{2} \mathbb{Z}$, or $\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$. They are the same.

This is saying more than "bijection"-the bijection preserves addition and multiplication. Isomorphism. ${ }^{2}$

$$
\mathbb{Z} / m_{1} m_{2} \mathbb{Z} \cong\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)
$$

Consequences of Isomorphism

CRT: If m_{1} and m_{2} are coprime, then $\mathbb{Z} / m_{1} m_{2} \mathbb{Z} \cong\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$. (isomorphism)

Fact: a has an inverse in $\mathbb{Z} / m_{1} m_{2} \mathbb{Z}$ if and only if $\left(a \bmod m_{1}, a \bmod m_{2}\right)$ has an inverse in $\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$.

What does it mean for (a, b) to have an inverse (x, y) ?

$$
(a, b)(x, y)=(1,1)
$$

$\ln \left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right),(1,1)$ is the multiplicative identity.
So, a has an inverse in $\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$ if and only if it has an inverse in both $\mathbb{Z} / m_{1} \mathbb{Z}$ and $\mathbb{Z} / m_{2} \mathbb{Z}$.

This happens if and only if $\operatorname{gcd}\left(a, m_{1}\right)=\operatorname{gcd}\left(a, m_{2}\right)=1$. But m_{1} and m_{2} are pairwise coprime. So, $\operatorname{gcd}\left(a, m_{1} m_{2}\right)=1$.

CRT, Euler's Totient Function

If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, a has an inverse in $\mathbb{Z} / m_{1} m_{2} \mathbb{Z}$ if and only if $\left(a \bmod m_{1}, a \bmod m_{2}\right)$ has an inverse in $\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$.

In particular, $\left|\left(\mathbb{Z} / m_{1} m_{2} \mathbb{Z}\right)^{\times}\right|=\left|\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times}\right|$.
The RHS is $\left|\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times}\right| \cdot\left|\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times}\right|$.
So, for coprime m_{1} and $m_{2}, \varphi\left(m_{1} m_{2}\right)=\varphi\left(m_{1}\right) \varphi\left(m_{2}\right)$.
So, φ is called multiplicative. ${ }^{3}$

[^1]
Formula for Euler's Totient Function

For $n \geq 2$, write $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ (prime factorization).
By multiplicativity, $\varphi(n)=\varphi\left(p_{1}^{\alpha_{1}}\right) \cdots \varphi\left(p_{k}^{\alpha_{k}}\right)$.
So, what is $\varphi\left(p^{\alpha}\right)$ for p prime and a positive integer α ?
There are p^{α} numbers from 1 to p^{α}. How many of them are not coprime with p^{α} ?
$p, 2 p, 3 p, \ldots, p^{\alpha}$. There are $p^{\alpha-1}$ of them. So, $\varphi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha-1}(p-1)$.

Thus, $\varphi(n)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)$.

Using Euler's Theorem for Exponentiation

We can use Euler's Theorem to calculate $5^{1000000} \bmod 12$.
By Euler's Theorem, since $\operatorname{gcd}(5,12)=1$, then $5^{\varphi(12)} \equiv 1$ (mod 12).

So, $\varphi(12)=\varphi\left(2^{2}\right) \varphi(3)=2 \cdot 2=4$.

- In fact, $(\mathbb{Z} / 12 \mathbb{Z})^{\times}=\{1,5,7,11\}$.

So, write $5^{1000000} \equiv 5^{250000 \cdot 4} \equiv 1(\bmod 12)$.
In general, $a^{k} \equiv a^{k \bmod \varphi(m)}(\bmod m)$, if $\operatorname{gcd}(a, m)=1$.

Polynomials

A polynomial is a function

$$
P(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0} .
$$

The integer $d \in \mathbb{N}$ is called the degree of the polynomial.

- Exception: If $P(x)=0$ for all x, the zero polynomial, then the degree is sometimes considered to be $-\infty$.

The numbers $a_{0}, a_{1}, \ldots, a_{d}$ are the coefficients. We say this is the coefficient representation.

Polynomials involve addition, multiplication.

- We can also consider polynomials over $\mathbb{Z} / m \mathbb{Z}$.

Polynomials in Modular Arithmetic

What does the polynomial $P(x)=x^{2}+4$ look like, modulo 5 ?

Not a continuous curve!

Polynomial Degree

Consider polynomials P and Q of degrees $d_{1}, d_{2}>0$.
What is the degree of $P+Q$?

- $\operatorname{deg}(P+Q)$ is at most $\max \left\{d_{1}, d_{2}\right\}$.
- Potentially $-\infty$, if $P=-Q$.

What is the degree of $P Q$?

- $d_{1}+d_{2}$.

Fields

Without being too formal, a field is

- a set with two operations, + (addition) and • (multiplication)
- such that addition and multiplication are associative and commutative;
- multiplication distributes over addition;
- every element has an additive inverse;
- every non-zero element has a multiplicative inverse.

What are some examples of fields?

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- $\mathbb{Z} / p \mathbb{Z}$ where p is prime.

What is not a field?
$-\mathbb{Z}, \mathbb{Z} / m \mathbb{Z}$ for m composite: missing multiplicative inverses.

Polynomial Long Division

Recall the Division Algorithm: Given $a, b \in \mathbb{Z}$ with $b>0$, then there exist unique $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, b-1\}$ with $a=q b+r$.

Polynomial Division: Given polynomials A and B where B is not constant, there exist unique polynomials Q and R with $A=Q B+R$, and $\operatorname{deg} R<\operatorname{deg} B$.

Example: To divide $6 x^{4}+4 x^{3}+2 x+1$ by $3 x+2$:

- Match coefficients. Multiply $3 x+2$ by $2 x^{3}$. Then

$$
2 x^{3}(3 x+2)=6 x^{4}+4 x^{3}
$$

- The remaining terms are $2 x+1$. Match coefficients.

Multiply $3 x+2$ by $2 / 3$. $(2 / 3)(3 x+2)=2 x+4 / 3$.

- So, $\left(2 x^{3}+2 / 3\right)(3 x+2)=6 x^{4}+4 x^{3}+2 x+4 / 3$.
- So, $6 x^{4}+4 x^{3}+2 x+1=\left(2 x^{3}+2 / 3\right)(3 x+2)-1 / 3$.

The algorithm needs multiplicative inverses-work in a field.

Polynomial Roots

A root of a polynomial P is a value a such that $P(a)=0$.
Theorem: The polynomial P has the root a if and only if $P(x)=(x-a) Q(x)$ for a polynomial Q.

Proof.

- (\Longleftarrow) : Plug in $x=a$ to get $P(a)=0$.
- (\Longrightarrow) : By Division Algorithm, $P(x)=(x-a) Q(x)+R$, where $\operatorname{deg} R<1$. So, R is a constant.
- Plug in $x=a .0=P(a)=R$.

Degree d Has At Most d Roots

Theorem: If a non-zero polynomial P is degree d, it has at most d roots.

Proof.

- If a is a root of P, then factor $P(x)=(x-a) Q(x)$.
- Each root we factor out reduces the degree of the remaining polynomial by 1.
- Since P has degree d, we can only factor out at most d roots. \square

Polynomials vs. Functions

Consider polynomials P and Q over $\mathbb{Z} / p \mathbb{Z}$ for p prime.
Two definitions of equality:

- $P=Q$ if every coefficient is the same.
- $P=Q$ as functions: $P=Q$ if $P(x)=Q(x)$ for every $x \in \mathbb{Z} / p \mathbb{Z}$.

By the first definition, there are infinitely many distinct polynomials.

By the second definition, there are only finitely many polynomials. There are finitely many functions $\mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$.

- There are p possible outputs for the first input.
- Then p possible outputs for the second input.
- ... and p possible outputs for the p th input.
- There are p^{p} functions $\mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$.

Polynomial Interpolation

Say we are given $d+1$ points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$.
Can we find a polynomial that goes through these points?
A degree d polynomial has the representation
$P(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0}$.
Try solving the system:

$$
\begin{aligned}
y_{1} & =a_{d} x_{1}^{d}+\cdots+a_{1} x_{1}+a_{0} \\
& \vdots \\
y_{d+1} & =a_{d} x_{d+1}^{d}+\cdots+a_{1} x_{d+1}+a_{0}
\end{aligned}
$$

There are $d+1$ equations, $d+1$ unknown coefficients. The system is linear.

- Try solving this system with linear algebra.

Lagrange Interpolation

Remember CRT? To solve

$$
\begin{array}{ll}
x \equiv y_{1} & \left(\bmod m_{1}\right) \\
x \equiv y_{2} & \left(\bmod m_{2}\right)
\end{array}
$$

find Δ_{1} and Δ_{2} so that

$$
\begin{array}{llll}
\Delta_{1} \equiv 1 & \left(\bmod m_{1}\right) & \Delta_{2} \equiv 0 & \left(\bmod m_{1}\right) \\
\Delta_{1} \equiv 0 & \left(\bmod m_{2}\right) & \Delta_{2} \equiv 1 & \left(\bmod m_{2}\right)
\end{array}
$$

and then take $x=y_{1} \Delta_{1}+y_{2} \Delta_{2}$.
Same idea for polynomials. For $i=1, \ldots, d+1$, we want:

$$
\Delta_{i}\left(x_{j}\right)= \begin{cases}1, & j=i \\ 0, & j \neq i\end{cases}
$$

and then $P(x)=\sum_{i=1}^{d+1} y_{i} \Delta_{i}(x)$.

Picture of Lagrange Interpolation

Consider points $(0,2)$, $(1,3)$, and $(2,0)$ in $\mathbb{Z} / 5 \mathbb{Z}$.

$$
\begin{aligned}
& P(x)=3 x^{2}+3 x+2
\end{aligned}
$$

Here, $P(x)=2 \cdot \Delta_{1}(x)+3 \cdot \Delta_{2}(x)$.

$$
\begin{aligned}
& \Delta_{1}(x)=3 x^{2}+x+1 \quad \Delta_{2}(x)=4 x^{2}+2 x \quad \Delta_{3}(x)=3 x^{2}+2 x \\
& \overbrace{0} \underset{1234}{ } .
\end{aligned}
$$

Constructing Δ Polynomials

For distinct points x_{1}, \ldots, x_{d+1}, construct:

$$
\Delta_{i}\left(x_{j}\right)= \begin{cases}1, & j=i \\ 0, & j \neq i\end{cases}
$$

How? First, consider the polynomial

$$
Q(x)=\prod_{j \neq i}\left(x-x_{j}\right)
$$

This polynomial is zero at all $x_{j}, j \neq i$. Now set:

$$
\Delta_{i}(x)=\frac{\prod_{j \neq i}\left(x-x_{j}\right)}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

This polynomial satisfies the required conditions. (Note:
Division requires a field.) Also, $\operatorname{deg} \Delta_{i}=d$.

Polynomial Interpolation

Theorem: Given $\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$, where x_{1}, \ldots, x_{d+1} are distinct, there is a unique polynomial P of degree at most d going through these points.

Proof.

- Existence: We constructed the polynomial using Lagrange interpolation!
- Each Δ_{i} has degree at most d, so $\operatorname{deg} P \leq d$.
- Uniqueness: Say that P_{1} and P_{2} both go through these points. Then, $P_{1}-P_{2}$ has $d+1$ roots, x_{1}, \ldots, x_{d+1}.
- Since $P_{1}-P_{2}$ has degree at most d, then $P_{1}-P_{2}$ must be the zero polynomial, i.e., $P_{1}=P_{2}$.

Slogan: $d+1$ points uniquely determine a degree $\leq d$ polynomial.

Summary

- CRT: $\mathbb{Z} / m_{1} \cdots m_{n} \mathbb{Z}$ and $\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times \cdots \times\left(\mathbb{Z} / m_{n} \mathbb{Z}\right)$ are isomorphic if m_{1}, \ldots, m_{n} are pairwise coprime.
- If $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$, then $\varphi\left(m_{1} m_{2}\right)=\varphi\left(m_{1}\right) \varphi\left(m_{2}\right)(\varphi$ is multiplicative).
- Thus, $\varphi\left(p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}\right)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)$ for a prime factorization.
- We work over fields: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / p \mathbb{Z}(\operatorname{AKA} G F(p))$ for p prime.
- A polynomial has a root a if and only if $P(x)=(x-a) Q(x)$ for some polynomial Q.
- A polynomial of degree d has at most d roots.
- Lagrange Interpolation: $d+1$ distinct points uniquely determine a degree $\leq d$ polynomial.

[^0]: ${ }^{1}$ The construction is the same as before-see notes for details.

[^1]: ${ }^{3}$ To learn more about the Euler totient function, multiplicative functions, and number theory, try Math 115.

