
Encrypting Communication

I want to buy my favorite show on Amazon.

I enter my credit card information online.

What if someone is trying to steal my credit card information?

Today: Encrypt communication using RSA.

Encrypting Communication

I want to buy my favorite show on Amazon.

I enter my credit card information online.

What if someone is trying to steal my credit card information?

Today: Encrypt communication using RSA.

Review

Z/mZ= {0,1, . . . ,m−1} with operations of addition and
multiplication modulo m.

(Z/mZ)× is the set of elements in Z/mZ which have
multplicative inverses.

I In other words, a ∈ (Z/mZ)× if and only if gcd(a,m) = 1.

For a ∈ (Z/mZ)×, we can compute a−1 efficiently. (Extended
Euclid’s Algorithm)

If p is prime, then (Z/pZ)× = {1, . . . ,p−1}.

Review

Z/mZ= {0,1, . . . ,m−1} with operations of addition and
multiplication modulo m.

(Z/mZ)× is the set of elements in Z/mZ which have
multplicative inverses.

I In other words, a ∈ (Z/mZ)× if and only if gcd(a,m) = 1.

For a ∈ (Z/mZ)×, we can compute a−1 efficiently. (Extended
Euclid’s Algorithm)

If p is prime, then (Z/pZ)× = {1, . . . ,p−1}.

Review

Z/mZ= {0,1, . . . ,m−1} with operations of addition and
multiplication modulo m.

(Z/mZ)× is the set of elements in Z/mZ which have
multplicative inverses.

I In other words, a ∈ (Z/mZ)× if and only if gcd(a,m) = 1.

For a ∈ (Z/mZ)×, we can compute a−1 efficiently. (Extended
Euclid’s Algorithm)

If p is prime, then (Z/pZ)× = {1, . . . ,p−1}.

Review

Z/mZ= {0,1, . . . ,m−1} with operations of addition and
multiplication modulo m.

(Z/mZ)× is the set of elements in Z/mZ which have
multplicative inverses.

I In other words, a ∈ (Z/mZ)× if and only if gcd(a,m) = 1.

For a ∈ (Z/mZ)×, we can compute a−1 efficiently.

(Extended
Euclid’s Algorithm)

If p is prime, then (Z/pZ)× = {1, . . . ,p−1}.

Review

Z/mZ= {0,1, . . . ,m−1} with operations of addition and
multiplication modulo m.

(Z/mZ)× is the set of elements in Z/mZ which have
multplicative inverses.

I In other words, a ∈ (Z/mZ)× if and only if gcd(a,m) = 1.

For a ∈ (Z/mZ)×, we can compute a−1 efficiently. (Extended
Euclid’s Algorithm)

If p is prime, then (Z/pZ)× = {1, . . . ,p−1}.

Review

Z/mZ= {0,1, . . . ,m−1} with operations of addition and
multiplication modulo m.

(Z/mZ)× is the set of elements in Z/mZ which have
multplicative inverses.

I In other words, a ∈ (Z/mZ)× if and only if gcd(a,m) = 1.

For a ∈ (Z/mZ)×, we can compute a−1 efficiently. (Extended
Euclid’s Algorithm)

If p is prime, then (Z/pZ)× = {1, . . . ,p−1}.

Extended Euclid’s Algorithm

Extended Euclid’s Algorithm:
I If b = 0, then egcd(a,0) = (a,1,0).
I Otherwise, let (d ′,x ′,y ′) := egcd(b,a mod b). Return

(d ′,y ′,x ′−ba/bcy ′).

Extended Euclid is just as fast as Euclid’s Algorithm.

We have proved: we can express gcd(a,b) as an integer linear
combination of a and b.

If d = x ·a+y ·b, then multiply both sides by k .
kd = kx ·a+ky ·b.

A number can be expressed as an integer linear combination of
a and b if and only if it is a multiple of gcd(a,b).

Extended Euclid’s Algorithm

Extended Euclid’s Algorithm:
I If b = 0, then egcd(a,0) = (a,1,0).
I Otherwise, let (d ′,x ′,y ′) := egcd(b,a mod b). Return

(d ′,y ′,x ′−ba/bcy ′).
Extended Euclid is just as fast as Euclid’s Algorithm.

We have proved: we can express gcd(a,b) as an integer linear
combination of a and b.

If d = x ·a+y ·b, then multiply both sides by k .
kd = kx ·a+ky ·b.

A number can be expressed as an integer linear combination of
a and b if and only if it is a multiple of gcd(a,b).

Extended Euclid’s Algorithm

Extended Euclid’s Algorithm:
I If b = 0, then egcd(a,0) = (a,1,0).
I Otherwise, let (d ′,x ′,y ′) := egcd(b,a mod b). Return

(d ′,y ′,x ′−ba/bcy ′).
Extended Euclid is just as fast as Euclid’s Algorithm.

We have proved: we can express gcd(a,b) as an integer linear
combination of a and b.

If d = x ·a+y ·b, then multiply both sides by k .
kd = kx ·a+ky ·b.

A number can be expressed as an integer linear combination of
a and b if and only if it is a multiple of gcd(a,b).

Extended Euclid’s Algorithm

Extended Euclid’s Algorithm:
I If b = 0, then egcd(a,0) = (a,1,0).
I Otherwise, let (d ′,x ′,y ′) := egcd(b,a mod b). Return

(d ′,y ′,x ′−ba/bcy ′).
Extended Euclid is just as fast as Euclid’s Algorithm.

We have proved: we can express gcd(a,b) as an integer linear
combination of a and b.

If d = x ·a+y ·b, then multiply both sides by k .

kd = kx ·a+ky ·b.

A number can be expressed as an integer linear combination of
a and b if and only if it is a multiple of gcd(a,b).

Extended Euclid’s Algorithm

Extended Euclid’s Algorithm:
I If b = 0, then egcd(a,0) = (a,1,0).
I Otherwise, let (d ′,x ′,y ′) := egcd(b,a mod b). Return

(d ′,y ′,x ′−ba/bcy ′).
Extended Euclid is just as fast as Euclid’s Algorithm.

We have proved: we can express gcd(a,b) as an integer linear
combination of a and b.

If d = x ·a+y ·b, then multiply both sides by k .
kd = kx ·a+ky ·b.

A number can be expressed as an integer linear combination of
a and b if and only if it is a multiple of gcd(a,b).

Extended Euclid’s Algorithm

Extended Euclid’s Algorithm:
I If b = 0, then egcd(a,0) = (a,1,0).
I Otherwise, let (d ′,x ′,y ′) := egcd(b,a mod b). Return

(d ′,y ′,x ′−ba/bcy ′).
Extended Euclid is just as fast as Euclid’s Algorithm.

We have proved: we can express gcd(a,b) as an integer linear
combination of a and b.

If d = x ·a+y ·b, then multiply both sides by k .
kd = kx ·a+ky ·b.

A number can be expressed as an integer linear combination of
a and b if and only if it is a multiple of gcd(a,b).

Back to Multiplicative Inverses

Let a ∈ Z/mZ.

I Run Extended Euclid on a,m, which gives
gcd(a,m) = x ·a+y ·m.

I If gcd(a,m)> 1, then a−1 does not exist.
I Otherwise, we have 1 = x ·a+y ·m.
I Take both sides modulo m: 1≡ x ·a (mod m).
I Thus, a−1 ≡ x (mod m).

We can now efficiently compute multiplicative inverses!

Back to Multiplicative Inverses

Let a ∈ Z/mZ.
I Run Extended Euclid on a,m, which gives

gcd(a,m) = x ·a+y ·m.

I If gcd(a,m)> 1, then a−1 does not exist.
I Otherwise, we have 1 = x ·a+y ·m.
I Take both sides modulo m: 1≡ x ·a (mod m).
I Thus, a−1 ≡ x (mod m).

We can now efficiently compute multiplicative inverses!

Back to Multiplicative Inverses

Let a ∈ Z/mZ.
I Run Extended Euclid on a,m, which gives

gcd(a,m) = x ·a+y ·m.
I If gcd(a,m)> 1, then a−1 does not exist.

I Otherwise, we have 1 = x ·a+y ·m.
I Take both sides modulo m: 1≡ x ·a (mod m).
I Thus, a−1 ≡ x (mod m).

We can now efficiently compute multiplicative inverses!

Back to Multiplicative Inverses

Let a ∈ Z/mZ.
I Run Extended Euclid on a,m, which gives

gcd(a,m) = x ·a+y ·m.
I If gcd(a,m)> 1, then a−1 does not exist.
I Otherwise, we have 1 = x ·a+y ·m.

I Take both sides modulo m: 1≡ x ·a (mod m).
I Thus, a−1 ≡ x (mod m).

We can now efficiently compute multiplicative inverses!

Back to Multiplicative Inverses

Let a ∈ Z/mZ.
I Run Extended Euclid on a,m, which gives

gcd(a,m) = x ·a+y ·m.
I If gcd(a,m)> 1, then a−1 does not exist.
I Otherwise, we have 1 = x ·a+y ·m.
I Take both sides modulo m: 1≡ x ·a (mod m).

I Thus, a−1 ≡ x (mod m).
We can now efficiently compute multiplicative inverses!

Back to Multiplicative Inverses

Let a ∈ Z/mZ.
I Run Extended Euclid on a,m, which gives

gcd(a,m) = x ·a+y ·m.
I If gcd(a,m)> 1, then a−1 does not exist.
I Otherwise, we have 1 = x ·a+y ·m.
I Take both sides modulo m: 1≡ x ·a (mod m).
I Thus, a−1 ≡ x (mod m).

We can now efficiently compute multiplicative inverses!

Back to Multiplicative Inverses

Let a ∈ Z/mZ.
I Run Extended Euclid on a,m, which gives

gcd(a,m) = x ·a+y ·m.
I If gcd(a,m)> 1, then a−1 does not exist.
I Otherwise, we have 1 = x ·a+y ·m.
I Take both sides modulo m: 1≡ x ·a (mod m).
I Thus, a−1 ≡ x (mod m).

We can now efficiently compute multiplicative inverses!

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1.

(Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.

I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2.

(Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.

I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2.

(Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.

I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4.

(Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.

I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2.

(Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.

I ϕ(p) for p prime? ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime?

ϕ(p) = p−1.

Euler’s Totient Function
We define ϕ(1) := 1, and for positive integers m,
ϕ(m) := |(Z/mZ)×|.

In other words, ϕ(m) is the number of elements with
multiplicative inverses in Z/mZ.

In other words, ϕ(m) is the number of integers in
{0,1, . . . ,m−1} which are relatively prime to m.

Examples:
I ϕ(2) = 1. (Z/2Z)× = {1}.
I ϕ(3) = 2. (Z/3Z)× = {1,2}.
I ϕ(4) = 2. (Z/4Z)× = {1,3}.
I ϕ(5) = 4. (Z/5Z)× = {1,2,3,4}.
I ϕ(6) = 2. (Z/6Z)× = {1,5}.
I ϕ(p) for p prime? ϕ(p) = p−1.

Bijections

Recall: Let f (x) = ax mod m.

The map f is a bijection if and
only if gcd(a,m) = 1.

So if gcd(a,m) = 1, {0,1,2, . . . ,m−1}= {0,a,2a, . . . ,(m−1)a}.

But what if you only apply f to elements in (Z/mZ)×?

Since a is coprime with m, and elements in (Z/mZ)× are
coprime with m, the result is still coprime with m.

But we know f is one-to-one.

Thus, f is also a bijection (Z/mZ)×→ (Z/mZ)×.

Bijections

Recall: Let f (x) = ax mod m. The map f is a bijection if and
only if gcd(a,m) = 1.

So if gcd(a,m) = 1, {0,1,2, . . . ,m−1}= {0,a,2a, . . . ,(m−1)a}.

But what if you only apply f to elements in (Z/mZ)×?

Since a is coprime with m, and elements in (Z/mZ)× are
coprime with m, the result is still coprime with m.

But we know f is one-to-one.

Thus, f is also a bijection (Z/mZ)×→ (Z/mZ)×.

Bijections

Recall: Let f (x) = ax mod m. The map f is a bijection if and
only if gcd(a,m) = 1.

So if gcd(a,m) = 1, {0,1,2, . . . ,m−1}= {0,a,2a, . . . ,(m−1)a}.

But what if you only apply f to elements in (Z/mZ)×?

Since a is coprime with m, and elements in (Z/mZ)× are
coprime with m, the result is still coprime with m.

But we know f is one-to-one.

Thus, f is also a bijection (Z/mZ)×→ (Z/mZ)×.

Bijections

Recall: Let f (x) = ax mod m. The map f is a bijection if and
only if gcd(a,m) = 1.

So if gcd(a,m) = 1, {0,1,2, . . . ,m−1}= {0,a,2a, . . . ,(m−1)a}.

But what if you only apply f to elements in (Z/mZ)×?

Since a is coprime with m, and elements in (Z/mZ)× are
coprime with m, the result is still coprime with m.

But we know f is one-to-one.

Thus, f is also a bijection (Z/mZ)×→ (Z/mZ)×.

Bijections

Recall: Let f (x) = ax mod m. The map f is a bijection if and
only if gcd(a,m) = 1.

So if gcd(a,m) = 1, {0,1,2, . . . ,m−1}= {0,a,2a, . . . ,(m−1)a}.

But what if you only apply f to elements in (Z/mZ)×?

Since a is coprime with m, and elements in (Z/mZ)× are
coprime with m, the result is still coprime with m.

But we know f is one-to-one.

Thus, f is also a bijection (Z/mZ)×→ (Z/mZ)×.

Bijections

Recall: Let f (x) = ax mod m. The map f is a bijection if and
only if gcd(a,m) = 1.

So if gcd(a,m) = 1, {0,1,2, . . . ,m−1}= {0,a,2a, . . . ,(m−1)a}.

But what if you only apply f to elements in (Z/mZ)×?

Since a is coprime with m, and elements in (Z/mZ)× are
coprime with m, the result is still coprime with m.

But we know f is one-to-one.

Thus, f is also a bijection (Z/mZ)×→ (Z/mZ)×.

Bijections

Recall: Let f (x) = ax mod m. The map f is a bijection if and
only if gcd(a,m) = 1.

So if gcd(a,m) = 1, {0,1,2, . . . ,m−1}= {0,a,2a, . . . ,(m−1)a}.

But what if you only apply f to elements in (Z/mZ)×?

Since a is coprime with m, and elements in (Z/mZ)× are
coprime with m, the result is still coprime with m.

But we know f is one-to-one.

Thus, f is also a bijection (Z/mZ)×→ (Z/mZ)×.

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.
I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.

In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide! ∏x∈(Z/mZ)× a≡ 1
(mod m). How many elements in (Z/mZ)×? ϕ(m).

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.

I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.
In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide! ∏x∈(Z/mZ)× a≡ 1
(mod m). How many elements in (Z/mZ)×? ϕ(m).

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.
I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.

In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide! ∏x∈(Z/mZ)× a≡ 1
(mod m). How many elements in (Z/mZ)×? ϕ(m).

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.
I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.

In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide! ∏x∈(Z/mZ)× a≡ 1
(mod m). How many elements in (Z/mZ)×? ϕ(m).

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.
I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.

In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide! ∏x∈(Z/mZ)× a≡ 1
(mod m). How many elements in (Z/mZ)×? ϕ(m).

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.
I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.

In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide! ∏x∈(Z/mZ)× a≡ 1
(mod m). How many elements in (Z/mZ)×? ϕ(m).

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.
I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.

In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide!

∏x∈(Z/mZ)× a≡ 1
(mod m). How many elements in (Z/mZ)×? ϕ(m).

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.
I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.

In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide! ∏x∈(Z/mZ)× a≡ 1
(mod m).

How many elements in (Z/mZ)×? ϕ(m).

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.
I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.

In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide! ∏x∈(Z/mZ)× a≡ 1
(mod m). How many elements in (Z/mZ)×?

ϕ(m).

Euler’s Theorem

If gcd(a,m) = 1, then f (x) = ax mod m is a bijection
(Z/mZ)×→ (Z/mZ)×.

Example: m = 5, a = 3.
I (Z/5Z)× = {1,2,3,4}= {3,6,9,12}.

In general, (Z/mZ)× = {ax : x ∈ (Z/mZ)×}.

Idea: Multiply all elements in both sides.

∏
x∈(Z/mZ)×

x ≡ ∏
x∈(Z/mZ)×

ax (mod m).

Each x ∈ (Z/mZ)× has an inverse, so divide! ∏x∈(Z/mZ)× a≡ 1
(mod m). How many elements in (Z/mZ)×? ϕ(m).

Euler’s Theorem

Euler’s Theorem: If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).

Consider the case when the modulus is a prime p.

Corollary (Fermat’s Little Theorem): If a is not a multiple of p,
then ap−1 ≡ 1 (mod p).

Consider the equation ap ≡ a (mod p).
I If a≡ 0 (mod p), the equation is true.
I If a 6≡ 0 (mod p), then the equation is true because of

Fermat’s Little Theorem.
Thus, for all a ∈ Z/pZ, ap ≡ a (mod p).

Euler’s Theorem

Euler’s Theorem: If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).

Consider the case when the modulus is a prime p.

Corollary (Fermat’s Little Theorem): If a is not a multiple of p,
then ap−1 ≡ 1 (mod p).

Consider the equation ap ≡ a (mod p).
I If a≡ 0 (mod p), the equation is true.
I If a 6≡ 0 (mod p), then the equation is true because of

Fermat’s Little Theorem.
Thus, for all a ∈ Z/pZ, ap ≡ a (mod p).

Euler’s Theorem

Euler’s Theorem: If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).

Consider the case when the modulus is a prime p.

Corollary (Fermat’s Little Theorem): If a is not a multiple of p,
then ap−1 ≡ 1 (mod p).

Consider the equation ap ≡ a (mod p).
I If a≡ 0 (mod p), the equation is true.
I If a 6≡ 0 (mod p), then the equation is true because of

Fermat’s Little Theorem.
Thus, for all a ∈ Z/pZ, ap ≡ a (mod p).

Euler’s Theorem

Euler’s Theorem: If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).

Consider the case when the modulus is a prime p.

Corollary (Fermat’s Little Theorem): If a is not a multiple of p,
then ap−1 ≡ 1 (mod p).

Consider the equation ap ≡ a (mod p).

I If a≡ 0 (mod p), the equation is true.
I If a 6≡ 0 (mod p), then the equation is true because of

Fermat’s Little Theorem.
Thus, for all a ∈ Z/pZ, ap ≡ a (mod p).

Euler’s Theorem

Euler’s Theorem: If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).

Consider the case when the modulus is a prime p.

Corollary (Fermat’s Little Theorem): If a is not a multiple of p,
then ap−1 ≡ 1 (mod p).

Consider the equation ap ≡ a (mod p).
I If a≡ 0 (mod p), the equation is true.

I If a 6≡ 0 (mod p), then the equation is true because of
Fermat’s Little Theorem.

Thus, for all a ∈ Z/pZ, ap ≡ a (mod p).

Euler’s Theorem

Euler’s Theorem: If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).

Consider the case when the modulus is a prime p.

Corollary (Fermat’s Little Theorem): If a is not a multiple of p,
then ap−1 ≡ 1 (mod p).

Consider the equation ap ≡ a (mod p).
I If a≡ 0 (mod p), the equation is true.
I If a 6≡ 0 (mod p), then the equation is true because of

Fermat’s Little Theorem.

Thus, for all a ∈ Z/pZ, ap ≡ a (mod p).

Euler’s Theorem

Euler’s Theorem: If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).

Consider the case when the modulus is a prime p.

Corollary (Fermat’s Little Theorem): If a is not a multiple of p,
then ap−1 ≡ 1 (mod p).

Consider the equation ap ≡ a (mod p).
I If a≡ 0 (mod p), the equation is true.
I If a 6≡ 0 (mod p), then the equation is true because of

Fermat’s Little Theorem.
Thus, for all a ∈ Z/pZ, ap ≡ a (mod p).

Exclusive OR

Remember XOR:
x y x⊕y
1 1 0
1 0 1
0 1 1
0 0 0

Notice: x⊕y = x +y (mod 2).

Facts: x⊕x = 0. Also, x⊕0 = x .

Consequence: y ⊕x⊕x = y ⊕0 = y .

Exclusive OR

Remember XOR:
x y x⊕y
1 1 0
1 0 1
0 1 1
0 0 0

Notice: x⊕y = x +y (mod 2).

Facts: x⊕x = 0. Also, x⊕0 = x .

Consequence: y ⊕x⊕x = y ⊕0 = y .

Exclusive OR

Remember XOR:
x y x⊕y
1 1 0
1 0 1
0 1 1
0 0 0

Notice: x⊕y = x +y (mod 2).

Facts: x⊕x = 0.

Also, x⊕0 = x .

Consequence: y ⊕x⊕x = y ⊕0 = y .

Exclusive OR

Remember XOR:
x y x⊕y
1 1 0
1 0 1
0 1 1
0 0 0

Notice: x⊕y = x +y (mod 2).

Facts: x⊕x = 0. Also, x⊕0 = x .

Consequence: y ⊕x⊕x = y ⊕0 = y .

Exclusive OR

Remember XOR:
x y x⊕y
1 1 0
1 0 1
0 1 1
0 0 0

Notice: x⊕y = x +y (mod 2).

Facts: x⊕x = 0. Also, x⊕0 = x .

Consequence: y ⊕x⊕x = y ⊕0 = y .

Cryptosystems

Alice has a message (a bit string).

I Pass it through an encryption function E .
I Send encrypted message E(m) to Bob.
I Bob passes message through decryption function D, so

that D(E(m)) = m.
We allow the encryption and decryption functions to depend on
a key k : D(E(m,k),k) = m.

This implies that E must be one-to-one.

An eavesdropper Eve intercepts the message E(m). We must
make sure she cannot recover m.

Cryptosystems

Alice has a message (a bit string).
I Pass it through an encryption function E .

I Send encrypted message E(m) to Bob.
I Bob passes message through decryption function D, so

that D(E(m)) = m.
We allow the encryption and decryption functions to depend on
a key k : D(E(m,k),k) = m.

This implies that E must be one-to-one.

An eavesdropper Eve intercepts the message E(m). We must
make sure she cannot recover m.

Cryptosystems

Alice has a message (a bit string).
I Pass it through an encryption function E .
I Send encrypted message E(m) to Bob.

I Bob passes message through decryption function D, so
that D(E(m)) = m.

We allow the encryption and decryption functions to depend on
a key k : D(E(m,k),k) = m.

This implies that E must be one-to-one.

An eavesdropper Eve intercepts the message E(m). We must
make sure she cannot recover m.

Cryptosystems

Alice has a message (a bit string).
I Pass it through an encryption function E .
I Send encrypted message E(m) to Bob.
I Bob passes message through decryption function D, so

that D(E(m)) = m.

We allow the encryption and decryption functions to depend on
a key k : D(E(m,k),k) = m.

This implies that E must be one-to-one.

An eavesdropper Eve intercepts the message E(m). We must
make sure she cannot recover m.

Cryptosystems

Alice has a message (a bit string).
I Pass it through an encryption function E .
I Send encrypted message E(m) to Bob.
I Bob passes message through decryption function D, so

that D(E(m)) = m.
We allow the encryption and decryption functions to depend on
a key k : D(E(m,k),k) = m.

This implies that E must be one-to-one.

An eavesdropper Eve intercepts the message E(m). We must
make sure she cannot recover m.

Cryptosystems

Alice has a message (a bit string).
I Pass it through an encryption function E .
I Send encrypted message E(m) to Bob.
I Bob passes message through decryption function D, so

that D(E(m)) = m.
We allow the encryption and decryption functions to depend on
a key k : D(E(m,k),k) = m.

This implies that E must be one-to-one.

An eavesdropper Eve intercepts the message E(m). We must
make sure she cannot recover m.

Cryptosystems

Alice has a message (a bit string).
I Pass it through an encryption function E .
I Send encrypted message E(m) to Bob.
I Bob passes message through decryption function D, so

that D(E(m)) = m.
We allow the encryption and decryption functions to depend on
a key k : D(E(m,k),k) = m.

This implies that E must be one-to-one.

An eavesdropper Eve intercepts the message E(m).

We must
make sure she cannot recover m.

Cryptosystems

Alice has a message (a bit string).
I Pass it through an encryption function E .
I Send encrypted message E(m) to Bob.
I Bob passes message through decryption function D, so

that D(E(m)) = m.
We allow the encryption and decryption functions to depend on
a key k : D(E(m,k),k) = m.

This implies that E must be one-to-one.

An eavesdropper Eve intercepts the message E(m). We must
make sure she cannot recover m.

One-Time Pad

One-Time Pad:

I k is a bit string of the same length as m.
I Choose: E(m,k) = D(m,k) = m⊕k .
I This works since D(E(m,k),k) = m⊕k ⊕k = m.
I Advantage: If Eve does not know k , then communication is

secure. All possible input messages m are possible.
I Disadvantage: After one use, the pad should be discarded

to maintain security. Annoying to use!
I Disadvantage: Alice and Bob must agree upon the key k

beforehand.

One-Time Pad

One-Time Pad:
I k is a bit string of the same length as m.

I Choose: E(m,k) = D(m,k) = m⊕k .
I This works since D(E(m,k),k) = m⊕k ⊕k = m.
I Advantage: If Eve does not know k , then communication is

secure. All possible input messages m are possible.
I Disadvantage: After one use, the pad should be discarded

to maintain security. Annoying to use!
I Disadvantage: Alice and Bob must agree upon the key k

beforehand.

One-Time Pad

One-Time Pad:
I k is a bit string of the same length as m.
I Choose: E(m,k) = D(m,k) = m⊕k .

I This works since D(E(m,k),k) = m⊕k ⊕k = m.
I Advantage: If Eve does not know k , then communication is

secure. All possible input messages m are possible.
I Disadvantage: After one use, the pad should be discarded

to maintain security. Annoying to use!
I Disadvantage: Alice and Bob must agree upon the key k

beforehand.

One-Time Pad

One-Time Pad:
I k is a bit string of the same length as m.
I Choose: E(m,k) = D(m,k) = m⊕k .
I This works since D(E(m,k),k) = m⊕k ⊕k = m.

I Advantage: If Eve does not know k , then communication is
secure. All possible input messages m are possible.

I Disadvantage: After one use, the pad should be discarded
to maintain security. Annoying to use!

I Disadvantage: Alice and Bob must agree upon the key k
beforehand.

One-Time Pad

One-Time Pad:
I k is a bit string of the same length as m.
I Choose: E(m,k) = D(m,k) = m⊕k .
I This works since D(E(m,k),k) = m⊕k ⊕k = m.
I Advantage: If Eve does not know k , then communication is

secure.

All possible input messages m are possible.
I Disadvantage: After one use, the pad should be discarded

to maintain security. Annoying to use!
I Disadvantage: Alice and Bob must agree upon the key k

beforehand.

One-Time Pad

One-Time Pad:
I k is a bit string of the same length as m.
I Choose: E(m,k) = D(m,k) = m⊕k .
I This works since D(E(m,k),k) = m⊕k ⊕k = m.
I Advantage: If Eve does not know k , then communication is

secure. All possible input messages m are possible.

I Disadvantage: After one use, the pad should be discarded
to maintain security. Annoying to use!

I Disadvantage: Alice and Bob must agree upon the key k
beforehand.

One-Time Pad

One-Time Pad:
I k is a bit string of the same length as m.
I Choose: E(m,k) = D(m,k) = m⊕k .
I This works since D(E(m,k),k) = m⊕k ⊕k = m.
I Advantage: If Eve does not know k , then communication is

secure. All possible input messages m are possible.
I Disadvantage: After one use, the pad should be discarded

to maintain security.

Annoying to use!
I Disadvantage: Alice and Bob must agree upon the key k

beforehand.

One-Time Pad

One-Time Pad:
I k is a bit string of the same length as m.
I Choose: E(m,k) = D(m,k) = m⊕k .
I This works since D(E(m,k),k) = m⊕k ⊕k = m.
I Advantage: If Eve does not know k , then communication is

secure. All possible input messages m are possible.
I Disadvantage: After one use, the pad should be discarded

to maintain security. Annoying to use!

I Disadvantage: Alice and Bob must agree upon the key k
beforehand.

One-Time Pad

One-Time Pad:
I k is a bit string of the same length as m.
I Choose: E(m,k) = D(m,k) = m⊕k .
I This works since D(E(m,k),k) = m⊕k ⊕k = m.
I Advantage: If Eve does not know k , then communication is

secure. All possible input messages m are possible.
I Disadvantage: After one use, the pad should be discarded

to maintain security. Annoying to use!
I Disadvantage: Alice and Bob must agree upon the key k

beforehand.

Public-Key Cryptography

In public-key cryptography:

I There are two keys, a public key K , and a private key k .
I The encrypted message is E(m,K) and the decryption is

D(E(m,K),k) = m.
I Anyone can send a message to Bob, since the encryption

function and public key are revealed to the public.
I Only Bob can decode the message, since only he has the

private key.

Think of Bob as Amazon. Anyone can encrypt credit card
information and send it to Amazon. Only Amazon can decrypt.

Is public-key cryptography possible? Open question, but we
can still try.

Public-Key Cryptography

In public-key cryptography:
I There are two keys, a public key K , and a private key k .

I The encrypted message is E(m,K) and the decryption is
D(E(m,K),k) = m.

I Anyone can send a message to Bob, since the encryption
function and public key are revealed to the public.

I Only Bob can decode the message, since only he has the
private key.

Think of Bob as Amazon. Anyone can encrypt credit card
information and send it to Amazon. Only Amazon can decrypt.

Is public-key cryptography possible? Open question, but we
can still try.

Public-Key Cryptography

In public-key cryptography:
I There are two keys, a public key K , and a private key k .
I The encrypted message is E(m,K) and the decryption is

D(E(m,K),k) = m.

I Anyone can send a message to Bob, since the encryption
function and public key are revealed to the public.

I Only Bob can decode the message, since only he has the
private key.

Think of Bob as Amazon. Anyone can encrypt credit card
information and send it to Amazon. Only Amazon can decrypt.

Is public-key cryptography possible? Open question, but we
can still try.

Public-Key Cryptography

In public-key cryptography:
I There are two keys, a public key K , and a private key k .
I The encrypted message is E(m,K) and the decryption is

D(E(m,K),k) = m.
I Anyone can send a message to Bob, since the encryption

function and public key are revealed to the public.

I Only Bob can decode the message, since only he has the
private key.

Think of Bob as Amazon. Anyone can encrypt credit card
information and send it to Amazon. Only Amazon can decrypt.

Is public-key cryptography possible? Open question, but we
can still try.

Public-Key Cryptography

In public-key cryptography:
I There are two keys, a public key K , and a private key k .
I The encrypted message is E(m,K) and the decryption is

D(E(m,K),k) = m.
I Anyone can send a message to Bob, since the encryption

function and public key are revealed to the public.
I Only Bob can decode the message, since only he has the

private key.

Think of Bob as Amazon. Anyone can encrypt credit card
information and send it to Amazon. Only Amazon can decrypt.

Is public-key cryptography possible? Open question, but we
can still try.

Public-Key Cryptography

In public-key cryptography:
I There are two keys, a public key K , and a private key k .
I The encrypted message is E(m,K) and the decryption is

D(E(m,K),k) = m.
I Anyone can send a message to Bob, since the encryption

function and public key are revealed to the public.
I Only Bob can decode the message, since only he has the

private key.

Think of Bob as Amazon.

Anyone can encrypt credit card
information and send it to Amazon. Only Amazon can decrypt.

Is public-key cryptography possible? Open question, but we
can still try.

Public-Key Cryptography

In public-key cryptography:
I There are two keys, a public key K , and a private key k .
I The encrypted message is E(m,K) and the decryption is

D(E(m,K),k) = m.
I Anyone can send a message to Bob, since the encryption

function and public key are revealed to the public.
I Only Bob can decode the message, since only he has the

private key.

Think of Bob as Amazon. Anyone can encrypt credit card
information and send it to Amazon.

Only Amazon can decrypt.

Is public-key cryptography possible? Open question, but we
can still try.

Public-Key Cryptography

In public-key cryptography:
I There are two keys, a public key K , and a private key k .
I The encrypted message is E(m,K) and the decryption is

D(E(m,K),k) = m.
I Anyone can send a message to Bob, since the encryption

function and public key are revealed to the public.
I Only Bob can decode the message, since only he has the

private key.

Think of Bob as Amazon. Anyone can encrypt credit card
information and send it to Amazon. Only Amazon can decrypt.

Is public-key cryptography possible? Open question, but we
can still try.

Public-Key Cryptography

In public-key cryptography:
I There are two keys, a public key K , and a private key k .
I The encrypted message is E(m,K) and the decryption is

D(E(m,K),k) = m.
I Anyone can send a message to Bob, since the encryption

function and public key are revealed to the public.
I Only Bob can decode the message, since only he has the

private key.

Think of Bob as Amazon. Anyone can encrypt credit card
information and send it to Amazon. Only Amazon can decrypt.

Is public-key cryptography possible?

Open question, but we
can still try.

Public-Key Cryptography

In public-key cryptography:
I There are two keys, a public key K , and a private key k .
I The encrypted message is E(m,K) and the decryption is

D(E(m,K),k) = m.
I Anyone can send a message to Bob, since the encryption

function and public key are revealed to the public.
I Only Bob can decode the message, since only he has the

private key.

Think of Bob as Amazon. Anyone can encrypt credit card
information and send it to Amazon. Only Amazon can decrypt.

Is public-key cryptography possible? Open question, but we
can still try.

RSA

RSA Protocol (Rivest-Shamir-Adleman):

I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.

I Let N := pq. Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq.

Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e.

The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e. The public key is (N,e).

I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).

I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.

I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.

I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).

I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.

I Explain why we think Eve cannot break it.

RSA

RSA Protocol (Rivest-Shamir-Adleman):
I Pick two large (2048-bit) distinct primes p and q.
I Let N := pq. Pick an integer e. The public key is (N,e).
I The decryption key is d := e−1 (mod (p−1)(q−1)).
I Encryption function: E(m) = me mod N.
I Decryption function: D(c) = cd mod N.

We have a lot of work to do.
I Prove RSA works: med ≡m (mod N).
I Explain why we can do the steps efficiently.
I Explain why we think Eve cannot break it.

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.
I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).
I If p divides m, then p divides med −m.
I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).

So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).
I In both cases, med −m is divisible by p.
I Similarly, med −m is divisible by q.
I Since p 6= q, then med −m is divisible by pq = N, i.e.,

med ≡m (mod N).

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.
I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).
I If p divides m, then p divides med −m.
I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).

So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).
I In both cases, med −m is divisible by p.
I Similarly, med −m is divisible by q.
I Since p 6= q, then med −m is divisible by pq = N, i.e.,

med ≡m (mod N).

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.

I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).
I If p divides m, then p divides med −m.
I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).

So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).
I In both cases, med −m is divisible by p.
I Similarly, med −m is divisible by q.
I Since p 6= q, then med −m is divisible by pq = N, i.e.,

med ≡m (mod N).

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.
I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).

I If p divides m, then p divides med −m.
I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).

So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).
I In both cases, med −m is divisible by p.
I Similarly, med −m is divisible by q.
I Since p 6= q, then med −m is divisible by pq = N, i.e.,

med ≡m (mod N).

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.
I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).
I If p divides m, then p divides med −m.

I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).
So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).

I In both cases, med −m is divisible by p.
I Similarly, med −m is divisible by q.
I Since p 6= q, then med −m is divisible by pq = N, i.e.,

med ≡m (mod N).

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.
I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).
I If p divides m, then p divides med −m.
I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).

So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).
I In both cases, med −m is divisible by p.
I Similarly, med −m is divisible by q.
I Since p 6= q, then med −m is divisible by pq = N, i.e.,

med ≡m (mod N).

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.
I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).
I If p divides m, then p divides med −m.
I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).

So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).

I In both cases, med −m is divisible by p.
I Similarly, med −m is divisible by q.
I Since p 6= q, then med −m is divisible by pq = N, i.e.,

med ≡m (mod N).

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.
I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).
I If p divides m, then p divides med −m.
I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).

So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).
I In both cases, med −m is divisible by p.

I Similarly, med −m is divisible by q.
I Since p 6= q, then med −m is divisible by pq = N, i.e.,

med ≡m (mod N).

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.
I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).
I If p divides m, then p divides med −m.
I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).

So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).
I In both cases, med −m is divisible by p.
I Similarly, med −m is divisible by q.

I Since p 6= q, then med −m is divisible by pq = N, i.e.,
med ≡m (mod N).

Correctness of RSA

Public: (N = pq,e), private: d = e−1 (mod (p−1)(q−1)).

Theorem: For any m ∈ {0,1, . . . ,N−1}, med ≡m (mod N).

Proof.
I By definition of d , ed = 1+k(p−1)(q−1) for some k ∈ N.
I So, med = m ·mk(p−1)(q−1).
I If p divides m, then p divides med −m.
I Otherwise, by Fermat’s Little Theorem, mp−1 ≡ 1 (mod p).

So, med −m = m(mk(p−1)(q−1)−1)≡ 0 (mod p).
I In both cases, med −m is divisible by p.
I Similarly, med −m is divisible by q.
I Since p 6= q, then med −m is divisible by pq = N, i.e.,

med ≡m (mod N).

Another Look at Correctness

Given any m ∈ {0,1, . . . ,N−1},
D(E(m)) = E(D(m)) = med = m.

The maps E and D are bijections Z/NZ→ Z/NZ.

The key idea behind cryptography is that E is easy to compute
but hard to invert.

Another Look at Correctness

Given any m ∈ {0,1, . . . ,N−1},
D(E(m)) = E(D(m)) = med = m.

The maps E and D are bijections Z/NZ→ Z/NZ.

The key idea behind cryptography is that E is easy to compute
but hard to invert.

Another Look at Correctness

Given any m ∈ {0,1, . . . ,N−1},
D(E(m)) = E(D(m)) = med = m.

The maps E and D are bijections Z/NZ→ Z/NZ.

The key idea behind cryptography is that E is easy to compute
but hard to invert.

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.

I How? By the Prime Number Theorem, the “probability” that
a random number between 1 and N is prime is ≈ 1/ lnN.

I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability. The probability of failure

can be made as low as the probability of meteor crash!
Compute d = e−1 (mod (p−1)(q−1)).

I Extended Euclid is fast!
Compute me mod N and (me)d mod N.

I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How?

By the Prime Number Theorem, the “probability” that
a random number between 1 and N is prime is ≈ 1/ lnN.

I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability. The probability of failure

can be made as low as the probability of meteor crash!
Compute d = e−1 (mod (p−1)(q−1)).

I Extended Euclid is fast!
Compute me mod N and (me)d mod N.

I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.

I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability. The probability of failure

can be made as low as the probability of meteor crash!
Compute d = e−1 (mod (p−1)(q−1)).

I Extended Euclid is fast!
Compute me mod N and (me)d mod N.

I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.
I We need to generate and check O(lnN) primes.

I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability. The probability of failure

can be made as low as the probability of meteor crash!
Compute d = e−1 (mod (p−1)(q−1)).

I Extended Euclid is fast!
Compute me mod N and (me)d mod N.

I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.
I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!

I Use a randomized primality test: test if N is prime in time
which is polynomial in the number of bits of N.

I Works with very high probability. The probability of failure
can be made as low as the probability of meteor crash!

Compute d = e−1 (mod (p−1)(q−1)).
I Extended Euclid is fast!

Compute me mod N and (me)d mod N.
I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.
I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.

I Works with very high probability. The probability of failure
can be made as low as the probability of meteor crash!

Compute d = e−1 (mod (p−1)(q−1)).
I Extended Euclid is fast!

Compute me mod N and (me)d mod N.
I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.
I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability.

The probability of failure
can be made as low as the probability of meteor crash!

Compute d = e−1 (mod (p−1)(q−1)).
I Extended Euclid is fast!

Compute me mod N and (me)d mod N.
I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.
I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability. The probability of failure

can be made as low as the probability of meteor crash!

Compute d = e−1 (mod (p−1)(q−1)).
I Extended Euclid is fast!

Compute me mod N and (me)d mod N.
I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.
I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability. The probability of failure

can be made as low as the probability of meteor crash!
Compute d = e−1 (mod (p−1)(q−1)).

I Extended Euclid is fast!
Compute me mod N and (me)d mod N.

I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.
I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability. The probability of failure

can be made as low as the probability of meteor crash!
Compute d = e−1 (mod (p−1)(q−1)).

I Extended Euclid is fast!

Compute me mod N and (me)d mod N.
I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.
I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability. The probability of failure

can be made as low as the probability of meteor crash!
Compute d = e−1 (mod (p−1)(q−1)).

I Extended Euclid is fast!
Compute me mod N and (me)d mod N.

I Repeated squaring! (fast modular exponentiation)

Implementing RSA Is Fast

Pick two 2048-bit prime numbers.
I How? By the Prime Number Theorem, the “probability” that

a random number between 1 and N is prime is ≈ 1/ lnN.
I We need to generate and check O(lnN) primes.
I This is linear in the number of bits!
I Use a randomized primality test: test if N is prime in time

which is polynomial in the number of bits of N.
I Works with very high probability. The probability of failure

can be made as low as the probability of meteor crash!
Compute d = e−1 (mod (p−1)(q−1)).

I Extended Euclid is fast!
Compute me mod N and (me)d mod N.

I Repeated squaring! (fast modular exponentiation)

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times.

Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait!

Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring.

21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16.

But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12).

So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000.

Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:

I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.

I If the base exceeds m, reduce the base modulo m.
What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217?

Write this as 2 ·216.

Fast Modular Exponentiation

What is 21000000 (mod 12)?

Multiply 2 by itself, a million times. Wait! Use repeated
squaring. 21000000 = 4500000 = 16250000 = · · ·

Insight: 16250000 is 250000 products of 16. But 16≡ 4
(mod 12). So, 16 ·16 ·16 · · · (mod 12)≡ 4 ·4 ·4 · · · (mod 12).

Continue: 4250000 ≡ 16125000. Reduce modulo 12 again: 4125000.

Repeated squaring:
I Square the base and cut the exponent in half.
I If the base exceeds m, reduce the base modulo m.

What if there is an odd exponent, 217? Write this as 2 ·216.

Breaking RSA Is Slow?

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
efficient algorithm for finding m.

In other words, we believe Eve cannot break RSA.
I Why do we believe this? One way to break RSA is to factor

N = pq to get (p−1)(q−1) and compute d yourself.
I How do we factor N? There are no good algorithms known!
I The naı̈ve algorithms for factoring N (brute force) take time

exponential in the number of bits.
I No one has ever factored a 2048-bit RSA key before

(without knowing p and q beforehand).

Breaking RSA Is Slow?

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
efficient algorithm for finding m.

In other words, we believe Eve cannot break RSA.
I Why do we believe this? One way to break RSA is to factor

N = pq to get (p−1)(q−1) and compute d yourself.
I How do we factor N? There are no good algorithms known!
I The naı̈ve algorithms for factoring N (brute force) take time

exponential in the number of bits.
I No one has ever factored a 2048-bit RSA key before

(without knowing p and q beforehand).

Breaking RSA Is Slow?

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
efficient algorithm for finding m.

In other words, we believe Eve cannot break RSA.

I Why do we believe this? One way to break RSA is to factor
N = pq to get (p−1)(q−1) and compute d yourself.

I How do we factor N? There are no good algorithms known!
I The naı̈ve algorithms for factoring N (brute force) take time

exponential in the number of bits.
I No one has ever factored a 2048-bit RSA key before

(without knowing p and q beforehand).

Breaking RSA Is Slow?

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
efficient algorithm for finding m.

In other words, we believe Eve cannot break RSA.
I Why do we believe this?

One way to break RSA is to factor
N = pq to get (p−1)(q−1) and compute d yourself.

I How do we factor N? There are no good algorithms known!
I The naı̈ve algorithms for factoring N (brute force) take time

exponential in the number of bits.
I No one has ever factored a 2048-bit RSA key before

(without knowing p and q beforehand).

Breaking RSA Is Slow?

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
efficient algorithm for finding m.

In other words, we believe Eve cannot break RSA.
I Why do we believe this? One way to break RSA is to factor

N = pq to get (p−1)(q−1) and compute d yourself.

I How do we factor N? There are no good algorithms known!
I The naı̈ve algorithms for factoring N (brute force) take time

exponential in the number of bits.
I No one has ever factored a 2048-bit RSA key before

(without knowing p and q beforehand).

Breaking RSA Is Slow?

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
efficient algorithm for finding m.

In other words, we believe Eve cannot break RSA.
I Why do we believe this? One way to break RSA is to factor

N = pq to get (p−1)(q−1) and compute d yourself.
I How do we factor N?

There are no good algorithms known!
I The naı̈ve algorithms for factoring N (brute force) take time

exponential in the number of bits.
I No one has ever factored a 2048-bit RSA key before

(without knowing p and q beforehand).

Breaking RSA Is Slow?

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
efficient algorithm for finding m.

In other words, we believe Eve cannot break RSA.
I Why do we believe this? One way to break RSA is to factor

N = pq to get (p−1)(q−1) and compute d yourself.
I How do we factor N? There are no good algorithms known!

I The naı̈ve algorithms for factoring N (brute force) take time
exponential in the number of bits.

I No one has ever factored a 2048-bit RSA key before
(without knowing p and q beforehand).

Breaking RSA Is Slow?

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
efficient algorithm for finding m.

In other words, we believe Eve cannot break RSA.
I Why do we believe this? One way to break RSA is to factor

N = pq to get (p−1)(q−1) and compute d yourself.
I How do we factor N? There are no good algorithms known!
I The naı̈ve algorithms for factoring N (brute force) take time

exponential in the number of bits.

I No one has ever factored a 2048-bit RSA key before
(without knowing p and q beforehand).

Breaking RSA Is Slow?

Cryptograph relies on assumptions.

RSA Assumption: Given N, e, and me mod N, there is no
efficient algorithm for finding m.

In other words, we believe Eve cannot break RSA.
I Why do we believe this? One way to break RSA is to factor

N = pq to get (p−1)(q−1) and compute d yourself.
I How do we factor N? There are no good algorithms known!
I The naı̈ve algorithms for factoring N (brute force) take time

exponential in the number of bits.
I No one has ever factored a 2048-bit RSA key before

(without knowing p and q beforehand).

Flipping RSA: Digital Signatures

Suppose I am Spiderman.

I Spiderman has a private key. (He accepts donations, so he
needs to secure credit card transactions.)

I Now I want to reveal my identity to the world as Spiderman.
I Videos can be faked. The public wants proof.
I One suggestion: I could reveal my private key, then

everyone will believe me.
I But what if I do not want to reveal my private key?

Now introducing digital signatures.

Flipping RSA: Digital Signatures

Suppose I am Spiderman.
I Spiderman has a private key.

(He accepts donations, so he
needs to secure credit card transactions.)

I Now I want to reveal my identity to the world as Spiderman.
I Videos can be faked. The public wants proof.
I One suggestion: I could reveal my private key, then

everyone will believe me.
I But what if I do not want to reveal my private key?

Now introducing digital signatures.

Flipping RSA: Digital Signatures

Suppose I am Spiderman.
I Spiderman has a private key. (He accepts donations, so he

needs to secure credit card transactions.)

I Now I want to reveal my identity to the world as Spiderman.
I Videos can be faked. The public wants proof.
I One suggestion: I could reveal my private key, then

everyone will believe me.
I But what if I do not want to reveal my private key?

Now introducing digital signatures.

Flipping RSA: Digital Signatures

Suppose I am Spiderman.
I Spiderman has a private key. (He accepts donations, so he

needs to secure credit card transactions.)
I Now I want to reveal my identity to the world as Spiderman.

I Videos can be faked. The public wants proof.
I One suggestion: I could reveal my private key, then

everyone will believe me.
I But what if I do not want to reveal my private key?

Now introducing digital signatures.

Flipping RSA: Digital Signatures

Suppose I am Spiderman.
I Spiderman has a private key. (He accepts donations, so he

needs to secure credit card transactions.)
I Now I want to reveal my identity to the world as Spiderman.
I Videos can be faked.

The public wants proof.
I One suggestion: I could reveal my private key, then

everyone will believe me.
I But what if I do not want to reveal my private key?

Now introducing digital signatures.

Flipping RSA: Digital Signatures

Suppose I am Spiderman.
I Spiderman has a private key. (He accepts donations, so he

needs to secure credit card transactions.)
I Now I want to reveal my identity to the world as Spiderman.
I Videos can be faked. The public wants proof.

I One suggestion: I could reveal my private key, then
everyone will believe me.

I But what if I do not want to reveal my private key?

Now introducing digital signatures.

Flipping RSA: Digital Signatures

Suppose I am Spiderman.
I Spiderman has a private key. (He accepts donations, so he

needs to secure credit card transactions.)
I Now I want to reveal my identity to the world as Spiderman.
I Videos can be faked. The public wants proof.
I One suggestion: I could reveal my private key, then

everyone will believe me.

I But what if I do not want to reveal my private key?

Now introducing digital signatures.

Flipping RSA: Digital Signatures

Suppose I am Spiderman.
I Spiderman has a private key. (He accepts donations, so he

needs to secure credit card transactions.)
I Now I want to reveal my identity to the world as Spiderman.
I Videos can be faked. The public wants proof.
I One suggestion: I could reveal my private key, then

everyone will believe me.
I But what if I do not want to reveal my private key?

Now introducing digital signatures.

Flipping RSA: Digital Signatures

Suppose I am Spiderman.
I Spiderman has a private key. (He accepts donations, so he

needs to secure credit card transactions.)
I Now I want to reveal my identity to the world as Spiderman.
I Videos can be faked. The public wants proof.
I One suggestion: I could reveal my private key, then

everyone will believe me.
I But what if I do not want to reveal my private key?

Now introducing digital signatures.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N. Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?
I Computing md mod N is no problem for me. I can sign the

message.
What if I am a fraud?

I I do not know d .
I I spend the rest of my life exhaustively looking through all

x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N.

Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?
I Computing md mod N is no problem for me. I can sign the

message.
What if I am a fraud?

I I do not know d .
I I spend the rest of my life exhaustively looking through all

x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N. Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?
I Computing md mod N is no problem for me. I can sign the

message.
What if I am a fraud?

I I do not know d .
I I spend the rest of my life exhaustively looking through all

x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N. Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?

I Computing md mod N is no problem for me. I can sign the
message.

What if I am a fraud?
I I do not know d .
I I spend the rest of my life exhaustively looking through all

x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N. Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?
I Computing md mod N is no problem for me.

I can sign the
message.

What if I am a fraud?
I I do not know d .
I I spend the rest of my life exhaustively looking through all

x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N. Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?
I Computing md mod N is no problem for me. I can sign the

message.

What if I am a fraud?
I I do not know d .
I I spend the rest of my life exhaustively looking through all

x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N. Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?
I Computing md mod N is no problem for me. I can sign the

message.
What if I am a fraud?

I I do not know d .
I I spend the rest of my life exhaustively looking through all

x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N. Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?
I Computing md mod N is no problem for me. I can sign the

message.
What if I am a fraud?

I I do not know d .

I I spend the rest of my life exhaustively looking through all
x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N. Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?
I Computing md mod N is no problem for me. I can sign the

message.
What if I am a fraud?

I I do not know d .
I I spend the rest of my life exhaustively looking through all

x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Digital Signatures

The public chooses a message m, e.g., “Spiderman is cool.”
(encode in binary)

The public asks Spiderman for md mod N. Then, they can
verify that (md)e ≡m mod N.

What if I really am Spiderman?
I Computing md mod N is no problem for me. I can sign the

message.
What if I am a fraud?

I I do not know d .
I I spend the rest of my life exhaustively looking through all

x ∈ Z/NZ until I find something with xe ≡m (mod N).

Takeaway: No one but Spiderman can sign the message.

Breaking Textbook RSA

I make a purchase on Amazon.

Amazon’s public key is (N,e).
I I take my credit card number m and encrypt it: E(m) = me

(mod N).
I I send E(m) to Amazon.
I Amazon decrypts my credit card number and completes

my transaction. I get my favorite show in BD format.
I But Eve was listening to our communication and now she

knows E(m).
I Eve sends E(m) to Amazon.
I Now Eve can use my credit card.
I Oops!

Breaking Textbook RSA

I make a purchase on Amazon. Amazon’s public key is (N,e).

I I take my credit card number m and encrypt it: E(m) = me

(mod N).
I I send E(m) to Amazon.
I Amazon decrypts my credit card number and completes

my transaction. I get my favorite show in BD format.
I But Eve was listening to our communication and now she

knows E(m).
I Eve sends E(m) to Amazon.
I Now Eve can use my credit card.
I Oops!

Breaking Textbook RSA

I make a purchase on Amazon. Amazon’s public key is (N,e).
I I take my credit card number m and encrypt it: E(m) = me

(mod N).

I I send E(m) to Amazon.
I Amazon decrypts my credit card number and completes

my transaction. I get my favorite show in BD format.
I But Eve was listening to our communication and now she

knows E(m).
I Eve sends E(m) to Amazon.
I Now Eve can use my credit card.
I Oops!

Breaking Textbook RSA

I make a purchase on Amazon. Amazon’s public key is (N,e).
I I take my credit card number m and encrypt it: E(m) = me

(mod N).
I I send E(m) to Amazon.

I Amazon decrypts my credit card number and completes
my transaction. I get my favorite show in BD format.

I But Eve was listening to our communication and now she
knows E(m).

I Eve sends E(m) to Amazon.
I Now Eve can use my credit card.
I Oops!

Breaking Textbook RSA

I make a purchase on Amazon. Amazon’s public key is (N,e).
I I take my credit card number m and encrypt it: E(m) = me

(mod N).
I I send E(m) to Amazon.
I Amazon decrypts my credit card number and completes

my transaction.

I get my favorite show in BD format.
I But Eve was listening to our communication and now she

knows E(m).
I Eve sends E(m) to Amazon.
I Now Eve can use my credit card.
I Oops!

Breaking Textbook RSA

I make a purchase on Amazon. Amazon’s public key is (N,e).
I I take my credit card number m and encrypt it: E(m) = me

(mod N).
I I send E(m) to Amazon.
I Amazon decrypts my credit card number and completes

my transaction. I get my favorite show in BD format.

I But Eve was listening to our communication and now she
knows E(m).

I Eve sends E(m) to Amazon.
I Now Eve can use my credit card.
I Oops!

Breaking Textbook RSA

I make a purchase on Amazon. Amazon’s public key is (N,e).
I I take my credit card number m and encrypt it: E(m) = me

(mod N).
I I send E(m) to Amazon.
I Amazon decrypts my credit card number and completes

my transaction. I get my favorite show in BD format.
I But Eve was listening to our communication and now she

knows E(m).

I Eve sends E(m) to Amazon.
I Now Eve can use my credit card.
I Oops!

Breaking Textbook RSA

I make a purchase on Amazon. Amazon’s public key is (N,e).
I I take my credit card number m and encrypt it: E(m) = me

(mod N).
I I send E(m) to Amazon.
I Amazon decrypts my credit card number and completes

my transaction. I get my favorite show in BD format.
I But Eve was listening to our communication and now she

knows E(m).
I Eve sends E(m) to Amazon.

I Now Eve can use my credit card.
I Oops!

Breaking Textbook RSA

I make a purchase on Amazon. Amazon’s public key is (N,e).
I I take my credit card number m and encrypt it: E(m) = me

(mod N).
I I send E(m) to Amazon.
I Amazon decrypts my credit card number and completes

my transaction. I get my favorite show in BD format.
I But Eve was listening to our communication and now she

knows E(m).
I Eve sends E(m) to Amazon.
I Now Eve can use my credit card.

I Oops!

Breaking Textbook RSA

I make a purchase on Amazon. Amazon’s public key is (N,e).
I I take my credit card number m and encrypt it: E(m) = me

(mod N).
I I send E(m) to Amazon.
I Amazon decrypts my credit card number and completes

my transaction. I get my favorite show in BD format.
I But Eve was listening to our communication and now she

knows E(m).
I Eve sends E(m) to Amazon.
I Now Eve can use my credit card.
I Oops!

Another RSA Attack

I I send E(m) = me mod N to Amazon.

I Eve intercepts the message.
I Eve chooses some number r and asks Amazon to decrypt

E(m)re for her.
I E(m)re does not look like a suspicious string. . . so Amazon

says why not.
I Amazon sends back [E(m)re]d mod N = mr mod N.
I Eve calculates r−1 (mod N) and uses this to recover the

message m.
I Now Eve knows my credit card number.
I Double oops!

Another RSA Attack

I I send E(m) = me mod N to Amazon.
I Eve intercepts the message.

I Eve chooses some number r and asks Amazon to decrypt
E(m)re for her.

I E(m)re does not look like a suspicious string. . . so Amazon
says why not.

I Amazon sends back [E(m)re]d mod N = mr mod N.
I Eve calculates r−1 (mod N) and uses this to recover the

message m.
I Now Eve knows my credit card number.
I Double oops!

Another RSA Attack

I I send E(m) = me mod N to Amazon.
I Eve intercepts the message.
I Eve chooses some number r and asks Amazon to decrypt

E(m)re for her.

I E(m)re does not look like a suspicious string. . . so Amazon
says why not.

I Amazon sends back [E(m)re]d mod N = mr mod N.
I Eve calculates r−1 (mod N) and uses this to recover the

message m.
I Now Eve knows my credit card number.
I Double oops!

Another RSA Attack

I I send E(m) = me mod N to Amazon.
I Eve intercepts the message.
I Eve chooses some number r and asks Amazon to decrypt

E(m)re for her.
I E(m)re does not look like a suspicious string. . .

so Amazon
says why not.

I Amazon sends back [E(m)re]d mod N = mr mod N.
I Eve calculates r−1 (mod N) and uses this to recover the

message m.
I Now Eve knows my credit card number.
I Double oops!

Another RSA Attack

I I send E(m) = me mod N to Amazon.
I Eve intercepts the message.
I Eve chooses some number r and asks Amazon to decrypt

E(m)re for her.
I E(m)re does not look like a suspicious string. . . so Amazon

says why not.

I Amazon sends back [E(m)re]d mod N = mr mod N.
I Eve calculates r−1 (mod N) and uses this to recover the

message m.
I Now Eve knows my credit card number.
I Double oops!

Another RSA Attack

I I send E(m) = me mod N to Amazon.
I Eve intercepts the message.
I Eve chooses some number r and asks Amazon to decrypt

E(m)re for her.
I E(m)re does not look like a suspicious string. . . so Amazon

says why not.
I Amazon sends back [E(m)re]d mod N = mr mod N.

I Eve calculates r−1 (mod N) and uses this to recover the
message m.

I Now Eve knows my credit card number.
I Double oops!

Another RSA Attack

I I send E(m) = me mod N to Amazon.
I Eve intercepts the message.
I Eve chooses some number r and asks Amazon to decrypt

E(m)re for her.
I E(m)re does not look like a suspicious string. . . so Amazon

says why not.
I Amazon sends back [E(m)re]d mod N = mr mod N.
I Eve calculates r−1 (mod N) and uses this to recover the

message m.

I Now Eve knows my credit card number.
I Double oops!

Another RSA Attack

I I send E(m) = me mod N to Amazon.
I Eve intercepts the message.
I Eve chooses some number r and asks Amazon to decrypt

E(m)re for her.
I E(m)re does not look like a suspicious string. . . so Amazon

says why not.
I Amazon sends back [E(m)re]d mod N = mr mod N.
I Eve calculates r−1 (mod N) and uses this to recover the

message m.
I Now Eve knows my credit card number.

I Double oops!

Another RSA Attack

I I send E(m) = me mod N to Amazon.
I Eve intercepts the message.
I Eve chooses some number r and asks Amazon to decrypt

E(m)re for her.
I E(m)re does not look like a suspicious string. . . so Amazon

says why not.
I Amazon sends back [E(m)re]d mod N = mr mod N.
I Eve calculates r−1 (mod N) and uses this to recover the

message m.
I Now Eve knows my credit card number.
I Double oops!

RSA with Padding

Simple idea: Before you encrypt the message m, pad it with
some randomly generated string s.

Send over E(concatenate(m,s)).

Even if we send the same message twice, the encrypted
messages are different.

I So, if Eve sends the same encrypted message as before, it
looks suspicious!

To avoid the second attack, be careful. Amazon should give out
as little information as possible.

RSA with Padding

Simple idea: Before you encrypt the message m, pad it with
some randomly generated string s.

Send over E(concatenate(m,s)).

Even if we send the same message twice, the encrypted
messages are different.

I So, if Eve sends the same encrypted message as before, it
looks suspicious!

To avoid the second attack, be careful. Amazon should give out
as little information as possible.

RSA with Padding

Simple idea: Before you encrypt the message m, pad it with
some randomly generated string s.

Send over E(concatenate(m,s)).

Even if we send the same message twice, the encrypted
messages are different.

I So, if Eve sends the same encrypted message as before, it
looks suspicious!

To avoid the second attack, be careful. Amazon should give out
as little information as possible.

RSA with Padding

Simple idea: Before you encrypt the message m, pad it with
some randomly generated string s.

Send over E(concatenate(m,s)).

Even if we send the same message twice, the encrypted
messages are different.

I So, if Eve sends the same encrypted message as before, it
looks suspicious!

To avoid the second attack, be careful. Amazon should give out
as little information as possible.

RSA with Padding

Simple idea: Before you encrypt the message m, pad it with
some randomly generated string s.

Send over E(concatenate(m,s)).

Even if we send the same message twice, the encrypted
messages are different.

I So, if Eve sends the same encrypted message as before, it
looks suspicious!

To avoid the second attack, be careful.

Amazon should give out
as little information as possible.

RSA with Padding

Simple idea: Before you encrypt the message m, pad it with
some randomly generated string s.

Send over E(concatenate(m,s)).

Even if we send the same message twice, the encrypted
messages are different.

I So, if Eve sends the same encrypted message as before, it
looks suspicious!

To avoid the second attack, be careful. Amazon should give out
as little information as possible.

Summary

I ϕ(1) := 1 and for m ≥ 2, ϕ(m) := |(Z/mZ)×|.
I Euler’s Theorem: If gcd(a,m) = 1, then aϕ(m) ≡ 1 (mod m).
I RSA: Pick two large primes p and q and an integer e,

encrypt by me mod pq, and decrypt by med ≡m (mod pq).
I RSA can also be used for digital signatures.
I RSA is currently not breakable (use padding though).

