
Preview

We are building the tools for learning about the RSA
cryptosystem—soon!

Today: Building the foundations of modular arithmetic.

Review

I Say x ≡ y (mod m) if m | x−y .
I If a≡ c (mod m) and b ≡ d (mod m), then a+b ≡ c+d

(mod m) and ab ≡ cd (mod m).
I Notation: Z/mZ= {0,1, . . . ,m−1} with the operations of

addition and multiplication modulo m.
I Each a ∈ Z has a unique representative in {0,1, . . . ,m−1}.
I For a ∈ Z/mZ, a−1 exists in Z/mZ if and only if

gcd(a,m) = 1.

Review of Multiplicative Inverses

Say a ∈ Z/mZ. How might we look for a−1?

Try every possibility.
I Is a−1 = 1? Check if a ·1≡ 1 (mod m).
I Is a−1 = 2? Check if a ·2≡ 1 (mod m).
I So on. . .

Thus we are led to study the map f (x) = ax (mod m) as x
ranges over Z/mZ.

Insight: If gcd(a,m) 6= 1, then the map f sends some non-zero
elements to zero.

I Example: Multiplication by 3, modulo 6.
I This means 3 cannot have an inverse modulo 6.

On the other hand, if gcd(a,m) = 1, then f is bijective, which
gives us our inverse.

Greatest Common Divisor

For two integers a,b ∈ Z, the greatest common divisor (GCD)
of a and b is the largest number that divides both a and b.

Fact: Any common divisor of a and b also divides gcd(a,b).
I If not, then d has a prime factor that gcd(a,b) does not.
I This prime factor p divides both a and b.
I So, pgcd(a,b) would divide both a and b, and is larger than

gcd(a,b), which is impossible.

Bijection Facts

Fact 1: For f : A→ B, if A and B are finite, then
I a bijection A→ B exists only if |A|= |B|;
I injective ⇐⇒ surjective ⇐⇒ bijective.

Why? Counting argument.
I Suppose f is injective. Then | range f |= |A|= |B|, but

range f ⊆ B. So range f = B.
I Suppose f is surjective. If two inputs are mapped to the

same output, then | range f |< |B|, impossible.
This is not true for infinite sets.

Example: f : N→ N with f (x) = x +1 is injective. Not
surjective.

Bijections Have Inverse Bijections

Fact 2: f is bijective ⇐⇒ there exists a two-sided inverse
function g.

f
(
g(y)

)
= y and g

(
f (x)

)
= x

for all x ∈ A, y ∈ B.
I If f is bijective, each y ∈ B has a x ∈ A with f (x) = y ; let

g(y) = x .
I So, f (g(y)) = f (x) = y .
I Also, g(f (x)) = g(y) = x .
I If g exists, then for y ∈ B, y = f (g(y)), where g(y) ∈ A. So

f is surjective.
I If f (x) = f (y), then (apply g) x = y . So f is injective.

GCD & Bijectivity

Theorem: The map f (x) = ax mod m is bijective if and only if
gcd(a,m) = 1.

Proof.
I If f is bijective, then ax ≡ 1 mod m for some x .
I So m | ax−1.
I So gcd(a,m) | ax and gcd(a,m) | ax−1, which means

gcd(a,m) | 1. gcd(a,m) = 1.
I Conversely, if gcd(a,m) = 1, then let ax1,ax2 ∈ range f .
I If ax1 ≡ ax2 mod m, then m | a(x1−x2).
I But a and m have no common factors, so m | x1−x2.
I Thus, x1 ≡ x2 (mod m). So f is injective (and thus bijective

because the sets are finite).

Existence of Multiplicative Inverses

Theorem: f (x) = ax mod m is bijective if and only if
gcd(a,m) = 1.

For a ∈ Z/mZ, a multiplicative inverse x is an element of
Z/mZ for which ax ≡ 1 (mod m).

Corollary: For all a ∈ Z/mZ, a has a multiplicative inverse
(necessarily unique) if and only if gcd(a,m) = 1.

I If gcd(a,m) = 1, then f (x) = ax mod m is bijective, so there
exists x with ax ≡ 1 mod m.

I The multiplicative inverse is unique because f is bijective.
I On the other hand, if d := gcd(a,m)> 1, then m/d 6≡ 0

(mod m).
I So for any x , ax · (m/d)≡ x(a/d) ·m ≡ 0 (mod m).
I So no multiplicative inverse for a can exist.

Elements with Multiplicative Inverses

If a−1 exists in Z/mZ, then a−1 also has an inverse. Namely, a
is the inverse of a−1.

Consequence: gcd(a−1,m) = 1.

If a and b have inverses, does ab have an inverse? Yes,
a−1b−1.

Notation: (Z/mZ)× consists of the elements in Z/mZ which
have multiplicative inverses.

I So, a ∈ (Z/mZ)× if and only if gcd(a,m) = 1.
I Example: (Z/6Z)× = {1,5}.
I Example: (Z/8Z)× = {1,3,5,7}.
I Example: (Z/pZ)× = {1, . . . ,p−1} for p prime.

The Structure of (Z/mZ)×

In (Z/mZ)×, not only can we multiply, we can also divide.
Multiplicative inverses exist!

But we can no longer add.
I In (Z/6Z)× = {1,5}, notice that 1+5 = 0 does not have an

inverse.
I Or, 1+1 = 2 does not have an inverse.

When p is prime, Z/pZ is more special: any non-zero number
has an inverse. Like Q or R or C.

So, Z/pZ is called a field. Sometimes, this is called GF(p).

Computing the GCD

Given a,b ∈ Z, how do we calculate gcd(a,b)?

First approach: factor a and b.
I Example: Let 72 = 23 ·32 and 27 = 33.
I For each prime p, take the largest power of p that divides

both numbers.
I Here, the GCD is 32 = 9.

Factoring Is Slow?

Problem: We do not know how to factor numbers fast.
I What does fast mean?
I We want an algorithm that runs in time which is a

polynomial in the size of the input.
I For a positive integer N, it takes ≈ log2 N bits to write. We

can try dividing N by all numbers between 1 and N.
I The above algorithm runs in time O(N), then its runtime is

exponential in the input size.
I Actually we only have to check O(

√
N) numbers, but this is

still bad—we want O((log2 N)k) for some k ∈ N.

Euclid’s Algorithm

Given positive integers a, b, assume (WLOG) a > b.

Key observation: If we write a = qb+ r (by the Division
Algorithm), where q ∈ Z and r ∈ {0,1, . . . ,b−1}, then:

I If d is a common divisor of a and b, then d | a−qb = r .
I If d is a common divisor of b and r , then d | qb+ r = a.
I A number divides a and b if and only if it divides b and r .

In other words, gcd(a,b) = gcd(b,a mod b).

Example: a = 72, b = 27.
I gcd(72,27) = gcd(27,72 mod 27) = gcd(27,18).
I gcd(27,18) = gcd(18,27 mod 18) = gcd(18,9).
I gcd(18,9) = gcd(9,18 mod 9) = gcd(9,0).
I gcd(9,0) = 9.

Analysis of Euclid’s Algorithm

Euclid’s Algorithm: Given two positive integers a > b:
I If b = 0, then gcd(a,0) = a.
I Otherwise, set a := b and b := a mod b.
I Repeat.

Analysis: What happens to the first argument, a?
I In one iteration, the first argument becomes b.
I Case 1: If b < a/2, then in one iteration the first argument

is cut in half.
I In two iterations, the first argument becomes a mod b.
I Case 2: If b ≥ a/2, then a mod b ≤ a/2. The first argument

is cut in half.
In at most two iterations, the first argument is cut in half.

Analysis of Euclid’s Algorithm

In at most two iterations, the first argument is cut in half.

In binary, “cut in half” means “lose a bit”.

If a has log2 N bits, then it takes ≈ 2 log2 N iterations to lose all
of its bits.

In each iteration, we perform a division, so it takes O(logN)
divisions.

If a = 2100. . .
I If we try all numbers from 1 to

√
a, we need to check 250

numbers. About one quadrillion numbers!
I If we use Euclid, we need ≈ 200 divisions.

Looking for Multiplicative Inverses

For a ∈ Z/mZ, how do we compute a−1 in Z/mZ?
I The inverse is a number x such that ax ≡ 1 (mod m).
I So, m | ax−1.
I So, my = ax−1 for some y ∈ Z. (definition of divisibility)
I So, ax−my = 1 for some x ,y ∈ Z.

We need to take an integer multiple of a, an integer multiple of
m, and add them to form 1.

Next question to investigate: what numbers can we reach using
integer combinations of a and m?

Integer Linear Combinations

What numbers can we reach using integer linear combinations
of a and m?

First observation: If d divides a and m, then d divides any
integer linear combination of a and m.

Second observation: Since this holds for any common divisor, it
holds for the greatest common divisor gcd(a,m).

So, the only numbers we can reach are multiples of gcd(a,m).
I This (again) proves that if gcd(a,m) 6= 1, then a−1 does not

exist in Z/mZ.
I Since we can only reach multiples of gcd(a,m) with integer

linear combinations of a and m, then we can never form 1.
Goal: Express gcd(a,m) as an integer combination of a and m.

From Euclid to Multiplicative Inverses

Goal: Express gcd(a,b) as an integer combination of a and b.

Remember: If we are computing gcd(a,b), then Euclid’s
Algorithm uses the Division Algorithm: a = qb+ r .

Algorithm in a nutshell: keep taking remainders. The remainder
left at the end is the GCD.

Can we write each remainder as an integer combination of a
and b?

I Start with r = 1 ·a−q ·b.
I The next inputs to the GCD algorithm are b and r .
I Since we have already written r = 1 ·a−q ·b, it is enough

to express the next remainder in terms of b and r .

Extended Euclid’s Algorithm in Action

At each step of the algorithm, express the remainder as an
integer linear combination of the inputs.

Example: Let a = 72, b = 27.
I Start with gcd(72,27).
I Division Algorithm: 72 = 2 ·27+18. Write

18 = 1 ·72−2 ·27.
I Next step: gcd(27,18).
I Division Algorithm: 27 = 1 ·18+9. Write 9 = 1 ·27−1 ·18.
I Plug in for 18, so 9 =−1 ·72+3 ·27.
I Next step: gcd(18,9).
I The GCD is 9.

We have expressed 9 = gcd(72,27) =−1 ·72+3 ·27.

Expressing the Remainder Operation

Euclid uses gcd(a,b) = gcd(b,a mod b).
I To calculate a mod b, first find the largest multiple of b

before you hit a. This is ba/bcb.1

I Thus the remainder is a−ba/bcb.

1The b·c notation is called the floor function and it means “round down”.

Extended Euclid’s Algorithm
Note: a mod b = a−ba/bcb.

Extended Euclid’s Algorithm:
I Goal: Given positive integers a > b, return (d ,x ,y), where

d = gcd(a,b), and d = x ·a+y ·b.
I Base case: If b = 0, then egcd(a,0) = (a,1,0). Because

a = 1 ·a+0 ·0.
I Assume (strong induction) that extended Euclid works for

smaller arguments.
I Then, egcd(b,a mod b) = (d ′,x ′,y ′), where

d ′ = gcd(b,a mod b) = x ′ ·b+y ′ · (a mod b).
I Now, gcd(a,b) = gcd(b,a mod b), so set d := d ′.
I Also, d = x ′ ·b+y ′ · (a−ba/bcb).
I Rearrange: d = y ′ ·a+(x ′−ba/bcy ′) ·b.
I So, set x := y ′ and y := x ′−ba/bcy ′.

Extended Euclid’s Algorithm

Extended Euclid’s Algorithm:
I If b = 0, then egcd(a,0) = (a,1,0).
I Otherwise, let (d ′,x ′,y ′) := egcd(b,a mod b). Return

(d ′,y ′,x ′−ba/bcy ′).

Summary

I We proved facts about bijections.
I The element a ∈ Z/mZ has a multiplicative inverse (i.e.,

a ∈ (Z/mZ)×) if and only if gcd(a,m) = 1.
I Euclid’s Algorithm: Efficiently compute GCD.
I Extended Euclid: Efficiently express GCD as an integer

linear combination of the inputs.

