
Listing Bit Strings

List all bit strings of length 3.

000, 001, 010, 011, 100, 101, 110, 111.

Now do it while only flipping one bit at a time!

Today: Finish graphs and talk about numbers.

Listing Bit Strings

List all bit strings of length 3.

000, 001, 010, 011, 100, 101, 110, 111.

Now do it while only flipping one bit at a time!

Today: Finish graphs and talk about numbers.

Listing Bit Strings

List all bit strings of length 3.

000, 001, 010, 011, 100, 101, 110, 111.

Now do it while only flipping one bit at a time!

Today: Finish graphs and talk about numbers.

Listing Bit Strings

List all bit strings of length 3.

000, 001, 010, 011, 100, 101, 110, 111.

Now do it while only flipping one bit at a time!

Today: Finish graphs and talk about numbers.

Forests

A forest is an acyclic graph.

Each connected component of a forest is a tree.

How many connected components in this graph? 6.

Forests

A forest is an acyclic graph.

Each connected component of a forest is a tree.

How many connected components in this graph?

6.

Forests

A forest is an acyclic graph.

Each connected component of a forest is a tree.

How many connected components in this graph? 6.

Complete Graphs

The complete graph Kn has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.
I The vertex set is V = L∪R.
I Left nodes are only allowed to connect to right nodes; right

nodes are only allowed to connect to left nodes.
The complete bipartite graph Km,n has m left nodes, n right
nodes, and all possible edges.

Complete Graphs

The complete graph Kn has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.

I The vertex set is V = L∪R.
I Left nodes are only allowed to connect to right nodes; right

nodes are only allowed to connect to left nodes.
The complete bipartite graph Km,n has m left nodes, n right
nodes, and all possible edges.

Complete Graphs

The complete graph Kn has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.
I The vertex set is V = L∪R.

I Left nodes are only allowed to connect to right nodes; right
nodes are only allowed to connect to left nodes.

The complete bipartite graph Km,n has m left nodes, n right
nodes, and all possible edges.

Complete Graphs

The complete graph Kn has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.
I The vertex set is V = L∪R.
I Left nodes are only allowed to connect to right nodes; right

nodes are only allowed to connect to left nodes.

The complete bipartite graph Km,n has m left nodes, n right
nodes, and all possible edges.

Complete Graphs

The complete graph Kn has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.
I The vertex set is V = L∪R.
I Left nodes are only allowed to connect to right nodes; right

nodes are only allowed to connect to left nodes.
The complete bipartite graph Km,n has m left nodes, n right
nodes, and all possible edges.

Edge Sparsity

How many edges does Kn have?

I Handshaking Lemma: ∑v∈V degv = 2|E |.
I ∑v∈V degv = n(n−1).
I So |E |= n(n−1)/2.

Asymptotic notation from CS 61A/B: |E |= Θ(n2).

For a tree on n vertices, |E |= n−1 = Θ(n).

The complete graph is called dense; trees are called sparse.

Edge Sparsity

How many edges does Kn have?
I Handshaking Lemma: ∑v∈V degv = 2|E |.

I ∑v∈V degv = n(n−1).
I So |E |= n(n−1)/2.

Asymptotic notation from CS 61A/B: |E |= Θ(n2).

For a tree on n vertices, |E |= n−1 = Θ(n).

The complete graph is called dense; trees are called sparse.

Edge Sparsity

How many edges does Kn have?
I Handshaking Lemma: ∑v∈V degv = 2|E |.
I ∑v∈V degv = n(n−1).

I So |E |= n(n−1)/2.
Asymptotic notation from CS 61A/B: |E |= Θ(n2).

For a tree on n vertices, |E |= n−1 = Θ(n).

The complete graph is called dense; trees are called sparse.

Edge Sparsity

How many edges does Kn have?
I Handshaking Lemma: ∑v∈V degv = 2|E |.
I ∑v∈V degv = n(n−1).
I So |E |= n(n−1)/2.

Asymptotic notation from CS 61A/B: |E |= Θ(n2).

For a tree on n vertices, |E |= n−1 = Θ(n).

The complete graph is called dense; trees are called sparse.

Edge Sparsity

How many edges does Kn have?
I Handshaking Lemma: ∑v∈V degv = 2|E |.
I ∑v∈V degv = n(n−1).
I So |E |= n(n−1)/2.

Asymptotic notation from CS 61A/B: |E |= Θ(n2).

For a tree on n vertices, |E |= n−1 = Θ(n).

The complete graph is called dense; trees are called sparse.

Edge Sparsity

How many edges does Kn have?
I Handshaking Lemma: ∑v∈V degv = 2|E |.
I ∑v∈V degv = n(n−1).
I So |E |= n(n−1)/2.

Asymptotic notation from CS 61A/B: |E |= Θ(n2).

For a tree on n vertices, |E |= n−1 = Θ(n).

The complete graph is called dense; trees are called sparse.

Edge Sparsity

How many edges does Kn have?
I Handshaking Lemma: ∑v∈V degv = 2|E |.
I ∑v∈V degv = n(n−1).
I So |E |= n(n−1)/2.

Asymptotic notation from CS 61A/B: |E |= Θ(n2).

For a tree on n vertices, |E |= n−1 = Θ(n).

The complete graph is called dense; trees are called sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides. So the total number of

sides is at least 3f .
I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.

I Each edge has two “sides”. So, if we add up all of the
sides, we get 2e.

I Each face has at least three sides. So the total number of
sides is at least 3f .

I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”.

So, if we add up all of the
sides, we get 2e.

I Each face has at least three sides. So the total number of
sides is at least 3f .

I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.

I Each face has at least three sides. So the total number of
sides is at least 3f .

I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides.

So the total number of
sides is at least 3f .

I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides. So the total number of

sides is at least 3f .

I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides. So the total number of

sides is at least 3f .
I Thus, 2e ≥ 3f .

I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides. So the total number of

sides is at least 3f .
I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.

I Rearrange: e ≤ 3v −6.
If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides. So the total number of

sides is at least 3f .
I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides. So the total number of

sides is at least 3f .
I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n).

Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides. So the total number of

sides is at least 3f .
I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides. So the total number of

sides is at least 3f .
I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.

K5 Is Not Planar

How many edges does K5 have?

10.
I e = 10.
I 3v −6 = 9.

This violates e ≤ 3v −6 for planar graphs.

K5 is not planar.

K5 Is Not Planar

How many edges does K5 have? 10.

I e = 10.
I 3v −6 = 9.

This violates e ≤ 3v −6 for planar graphs.

K5 is not planar.

K5 Is Not Planar

How many edges does K5 have? 10.
I e = 10.

I 3v −6 = 9.
This violates e ≤ 3v −6 for planar graphs.

K5 is not planar.

K5 Is Not Planar

How many edges does K5 have? 10.
I e = 10.
I 3v −6 = 9.

This violates e ≤ 3v −6 for planar graphs.

K5 is not planar.

K5 Is Not Planar

How many edges does K5 have? 10.
I e = 10.
I 3v −6 = 9.

This violates e ≤ 3v −6 for planar graphs.

K5 is not planar.

K5 Is Not Planar

How many edges does K5 have? 10.
I e = 10.
I 3v −6 = 9.

This violates e ≤ 3v −6 for planar graphs.

K5 is not planar.

K3,3 Is Not Planar

Consider K3,3.

Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges?

9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9.

Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices?

6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6.

So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails.

Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!

I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.

I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides.

Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!

I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.

I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives
e ≤ 2v −4 for bipartite planar graphs.

Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.

Conclusion: K3,3 is not planar.

K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.

Why K5 and K3,3?

Why did we show that K5 and K3,3 are non-planar?

Kuratowski’s Theorem: A graph is non-planar if and only if it
“contains” K5 or K3,3.

I The word “contains” is tricky. . . do not worry about the
details. Not important for the course.

I Content of theorem: essentially K5 and K3,3 are the only
obstructions to non-planarity.

Why K5 and K3,3?

Why did we show that K5 and K3,3 are non-planar?

Kuratowski’s Theorem: A graph is non-planar if and only if it
“contains” K5 or K3,3.

I The word “contains” is tricky. . . do not worry about the
details. Not important for the course.

I Content of theorem: essentially K5 and K3,3 are the only
obstructions to non-planarity.

Why K5 and K3,3?

Why did we show that K5 and K3,3 are non-planar?

Kuratowski’s Theorem: A graph is non-planar if and only if it
“contains” K5 or K3,3.

I The word “contains” is tricky. . .

do not worry about the
details. Not important for the course.

I Content of theorem: essentially K5 and K3,3 are the only
obstructions to non-planarity.

Why K5 and K3,3?

Why did we show that K5 and K3,3 are non-planar?

Kuratowski’s Theorem: A graph is non-planar if and only if it
“contains” K5 or K3,3.

I The word “contains” is tricky. . . do not worry about the
details.

Not important for the course.
I Content of theorem: essentially K5 and K3,3 are the only

obstructions to non-planarity.

Why K5 and K3,3?

Why did we show that K5 and K3,3 are non-planar?

Kuratowski’s Theorem: A graph is non-planar if and only if it
“contains” K5 or K3,3.

I The word “contains” is tricky. . . do not worry about the
details. Not important for the course.

I Content of theorem: essentially K5 and K3,3 are the only
obstructions to non-planarity.

Why K5 and K3,3?

Why did we show that K5 and K3,3 are non-planar?

Kuratowski’s Theorem: A graph is non-planar if and only if it
“contains” K5 or K3,3.

I The word “contains” is tricky. . . do not worry about the
details. Not important for the course.

I Content of theorem: essentially K5 and K3,3 are the only
obstructions to non-planarity.

Graph Coloring

A (vertex) coloring of a graph G is an assignment of colors to
vertices so that no two colors are joined by an edge.

Why do we care about graph coloring?
I Edges are used to encode constraints.
I Graph colorings can be used for scheduling, etc.

Graph Coloring

A (vertex) coloring of a graph G is an assignment of colors to
vertices so that no two colors are joined by an edge.

Why do we care about graph coloring?

I Edges are used to encode constraints.
I Graph colorings can be used for scheduling, etc.

Graph Coloring

A (vertex) coloring of a graph G is an assignment of colors to
vertices so that no two colors are joined by an edge.

Why do we care about graph coloring?
I Edges are used to encode constraints.

I Graph colorings can be used for scheduling, etc.

Graph Coloring

A (vertex) coloring of a graph G is an assignment of colors to
vertices so that no two colors are joined by an edge.

Why do we care about graph coloring?
I Edges are used to encode constraints.
I Graph colorings can be used for scheduling, etc.

Coloring with Maximum Degree +1

Theorem. Let dmax be the maximum degree of any vertex in G.
Then G can be colored with dmax + 1 colors.

Proof.
I Use induction on |V |.
I For |V | ≥ 2, remove a vertex v .
I Inductively color the resulting graph with dmax + 1 colors.
I Add v back in.
I Since v has at most dmax neighbors which use at most

dmax colors, use an unused color to color v .
For some types of graphs, this bound is very bad.

Coloring with Maximum Degree +1

Theorem. Let dmax be the maximum degree of any vertex in G.
Then G can be colored with dmax + 1 colors.

Proof.

I Use induction on |V |.
I For |V | ≥ 2, remove a vertex v .
I Inductively color the resulting graph with dmax + 1 colors.
I Add v back in.
I Since v has at most dmax neighbors which use at most

dmax colors, use an unused color to color v .
For some types of graphs, this bound is very bad.

Coloring with Maximum Degree +1

Theorem. Let dmax be the maximum degree of any vertex in G.
Then G can be colored with dmax + 1 colors.

Proof.
I Use induction on |V |.

I For |V | ≥ 2, remove a vertex v .
I Inductively color the resulting graph with dmax + 1 colors.
I Add v back in.
I Since v has at most dmax neighbors which use at most

dmax colors, use an unused color to color v .
For some types of graphs, this bound is very bad.

Coloring with Maximum Degree +1

Theorem. Let dmax be the maximum degree of any vertex in G.
Then G can be colored with dmax + 1 colors.

Proof.
I Use induction on |V |.
I For |V | ≥ 2, remove a vertex v .

I Inductively color the resulting graph with dmax + 1 colors.
I Add v back in.
I Since v has at most dmax neighbors which use at most

dmax colors, use an unused color to color v .
For some types of graphs, this bound is very bad.

Coloring with Maximum Degree +1

Theorem. Let dmax be the maximum degree of any vertex in G.
Then G can be colored with dmax + 1 colors.

Proof.
I Use induction on |V |.
I For |V | ≥ 2, remove a vertex v .
I Inductively color the resulting graph with dmax + 1 colors.

I Add v back in.
I Since v has at most dmax neighbors which use at most

dmax colors, use an unused color to color v .
For some types of graphs, this bound is very bad.

Coloring with Maximum Degree +1

Theorem. Let dmax be the maximum degree of any vertex in G.
Then G can be colored with dmax + 1 colors.

Proof.
I Use induction on |V |.
I For |V | ≥ 2, remove a vertex v .
I Inductively color the resulting graph with dmax + 1 colors.
I Add v back in.

I Since v has at most dmax neighbors which use at most
dmax colors, use an unused color to color v .

For some types of graphs, this bound is very bad.

Coloring with Maximum Degree +1

Theorem. Let dmax be the maximum degree of any vertex in G.
Then G can be colored with dmax + 1 colors.

Proof.
I Use induction on |V |.
I For |V | ≥ 2, remove a vertex v .
I Inductively color the resulting graph with dmax + 1 colors.
I Add v back in.
I Since v has at most dmax neighbors which use at most

dmax colors, use an unused color to color v .

For some types of graphs, this bound is very bad.

Coloring with Maximum Degree +1

Theorem. Let dmax be the maximum degree of any vertex in G.
Then G can be colored with dmax + 1 colors.

Proof.
I Use induction on |V |.
I For |V | ≥ 2, remove a vertex v .
I Inductively color the resulting graph with dmax + 1 colors.
I Add v back in.
I Since v has at most dmax neighbors which use at most

dmax colors, use an unused color to color v .
For some types of graphs, this bound is very bad.

Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite ⇐⇒ G can be 2-colored.

Proof.
I If G is bipartite with V = L∪R, color vertices in L blue and

vertices in R red.
I Conversely, suppose G is 2-colorable.
I In the 2-coloring of G, the red vertices have no edges

between them, and similarly for blue vertices.
I So the graph is bipartite.

Consider Kn,n. Then dmax + 1 = n + 1, but it can be 2-colored.

Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite ⇐⇒ G can be 2-colored.

Proof.

I If G is bipartite with V = L∪R, color vertices in L blue and
vertices in R red.

I Conversely, suppose G is 2-colorable.
I In the 2-coloring of G, the red vertices have no edges

between them, and similarly for blue vertices.
I So the graph is bipartite.

Consider Kn,n. Then dmax + 1 = n + 1, but it can be 2-colored.

Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite ⇐⇒ G can be 2-colored.

Proof.
I If G is bipartite with V = L∪R, color vertices in L blue and

vertices in R red.

I Conversely, suppose G is 2-colorable.
I In the 2-coloring of G, the red vertices have no edges

between them, and similarly for blue vertices.
I So the graph is bipartite.

Consider Kn,n. Then dmax + 1 = n + 1, but it can be 2-colored.

Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite ⇐⇒ G can be 2-colored.

Proof.
I If G is bipartite with V = L∪R, color vertices in L blue and

vertices in R red.
I Conversely, suppose G is 2-colorable.

I In the 2-coloring of G, the red vertices have no edges
between them, and similarly for blue vertices.

I So the graph is bipartite.

Consider Kn,n. Then dmax + 1 = n + 1, but it can be 2-colored.

Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite ⇐⇒ G can be 2-colored.

Proof.
I If G is bipartite with V = L∪R, color vertices in L blue and

vertices in R red.
I Conversely, suppose G is 2-colorable.
I In the 2-coloring of G, the red vertices have no edges

between them, and similarly for blue vertices.

I So the graph is bipartite.

Consider Kn,n. Then dmax + 1 = n + 1, but it can be 2-colored.

Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite ⇐⇒ G can be 2-colored.

Proof.
I If G is bipartite with V = L∪R, color vertices in L blue and

vertices in R red.
I Conversely, suppose G is 2-colorable.
I In the 2-coloring of G, the red vertices have no edges

between them, and similarly for blue vertices.
I So the graph is bipartite.

Consider Kn,n. Then dmax + 1 = n + 1, but it can be 2-colored.

Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite ⇐⇒ G can be 2-colored.

Proof.
I If G is bipartite with V = L∪R, color vertices in L blue and

vertices in R red.
I Conversely, suppose G is 2-colorable.
I In the 2-coloring of G, the red vertices have no edges

between them, and similarly for blue vertices.
I So the graph is bipartite.

Consider Kn,n.

Then dmax + 1 = n + 1, but it can be 2-colored.

Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite ⇐⇒ G can be 2-colored.

Proof.
I If G is bipartite with V = L∪R, color vertices in L blue and

vertices in R red.
I Conversely, suppose G is 2-colorable.
I In the 2-coloring of G, the red vertices have no edges

between them, and similarly for blue vertices.
I So the graph is bipartite.

Consider Kn,n. Then dmax + 1 = n + 1, but it can be 2-colored.

Graph Coloring & Planarity

Consider a colored map and its planar dual:

(Ignore the infinite face.)

Coloring a map so no adjacent regions have the same color is
equivalent to coloring a planar graph.

Graph Coloring & Planarity

Consider a colored map and its planar dual:

(Ignore the infinite face.)

Coloring a map so no adjacent regions have the same color is
equivalent to coloring a planar graph.

Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

I The proof required a human to narrow down the cases,
and a computer to exhaustively check the remaining cases.

I The proof has not yet been simplified to the point where a
human can easily read over it.

I Note: K5 requires 5 colors.

Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

I The proof required a human to narrow down the cases,
and a computer to exhaustively check the remaining cases.

I The proof has not yet been simplified to the point where a
human can easily read over it.

I Note: K5 requires 5 colors.

Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

I The proof required a human to narrow down the cases,
and a computer to exhaustively check the remaining cases.

I The proof has not yet been simplified to the point where a
human can easily read over it.

I Note: K5 requires 5 colors.

Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

I The proof required a human to narrow down the cases,
and a computer to exhaustively check the remaining cases.

I The proof has not yet been simplified to the point where a
human can easily read over it.

I Note: K5 requires 5 colors.

Hypercubes

The hypercube of dimension d , Qd , where d is a positive
integer, has:

I vertices which are labeled by length-d bit strings, and
I an edge between two vertices if and only if they differ in

exactly one bit.

Here is a picture of Q3.

000000 001001

010010 011011

100100 101101

110110 111111

Hypercubes

The hypercube of dimension d , Qd , where d is a positive
integer, has:

I vertices which are labeled by length-d bit strings, and
I an edge between two vertices if and only if they differ in

exactly one bit.
Here is a picture of Q3.

000000 001001

010010 011011

100100 101101

110110 111111

Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0.

Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices? 2d .
Number of edges? ∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).

Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0. Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices? 2d .
Number of edges? ∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).

Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0. Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube.

Induction!

Number of vertices? 2d .
Number of edges? ∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).

Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0. Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices? 2d .
Number of edges? ∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).

Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0. Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices?

2d .
Number of edges? ∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).

Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0. Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices? 2d .

Number of edges? ∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).

Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0. Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices? 2d .
Number of edges?

∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).

Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0. Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices? 2d .
Number of edges? ∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).

Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0. Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices? 2d .
Number of edges? ∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.
I Color all vertices with an even number of 0s blue and an

odd number of 0s orange.
I Since each edge flips a bit, edges only connect vertices of

different parity.
Inductive Proof.

I Check the base case.
I Inductively color the 0-face.
I If 0x is a vertex colored blue, color the vertex 1x orange

and if 0x is orange, color 1x blue.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.

I Color all vertices with an even number of 0s blue and an
odd number of 0s orange.

I Since each edge flips a bit, edges only connect vertices of
different parity.

Inductive Proof.
I Check the base case.
I Inductively color the 0-face.
I If 0x is a vertex colored blue, color the vertex 1x orange

and if 0x is orange, color 1x blue.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.
I Color all vertices with an even number of 0s blue and an

odd number of 0s orange.

I Since each edge flips a bit, edges only connect vertices of
different parity.

Inductive Proof.
I Check the base case.
I Inductively color the 0-face.
I If 0x is a vertex colored blue, color the vertex 1x orange

and if 0x is orange, color 1x blue.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.
I Color all vertices with an even number of 0s blue and an

odd number of 0s orange.
I Since each edge flips a bit, edges only connect vertices of

different parity.

Inductive Proof.
I Check the base case.
I Inductively color the 0-face.
I If 0x is a vertex colored blue, color the vertex 1x orange

and if 0x is orange, color 1x blue.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.
I Color all vertices with an even number of 0s blue and an

odd number of 0s orange.
I Since each edge flips a bit, edges only connect vertices of

different parity.
Inductive Proof.

I Check the base case.
I Inductively color the 0-face.
I If 0x is a vertex colored blue, color the vertex 1x orange

and if 0x is orange, color 1x blue.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.
I Color all vertices with an even number of 0s blue and an

odd number of 0s orange.
I Since each edge flips a bit, edges only connect vertices of

different parity.
Inductive Proof.

I Check the base case.

I Inductively color the 0-face.
I If 0x is a vertex colored blue, color the vertex 1x orange

and if 0x is orange, color 1x blue.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.
I Color all vertices with an even number of 0s blue and an

odd number of 0s orange.
I Since each edge flips a bit, edges only connect vertices of

different parity.
Inductive Proof.

I Check the base case.
I Inductively color the 0-face.

I If 0x is a vertex colored blue, color the vertex 1x orange
and if 0x is orange, color 1x blue.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.
I Color all vertices with an even number of 0s blue and an

odd number of 0s orange.
I Since each edge flips a bit, edges only connect vertices of

different parity.
Inductive Proof.

I Check the base case.
I Inductively color the 0-face.
I If 0x is a vertex colored blue, color the vertex 1x orange

and if 0x is orange, color 1x blue.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:

I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.

I Length 2: Length-1 sequence with 0s prepended. 00, 01.
Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended.

00, 01.
Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended.

11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.

Put it together: 00, 01, 11, 10.
I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.

Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.

Hypercubes have Hamiltonian cycles.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours?

Still 2:00.

In the clock mathematics, the numbers wrap around: 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, . . .

We will do the same thing for bases other than 12.
Also, we will typically use the representatives {0,1, . . . ,11}
rather than {1, . . . ,12}.

Question to ponder: What time will it be in 21000000 hours from
now? Can this even be computed?

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.

In the clock mathematics, the numbers wrap around: 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, . . .

We will do the same thing for bases other than 12.
Also, we will typically use the representatives {0,1, . . . ,11}
rather than {1, . . . ,12}.

Question to ponder: What time will it be in 21000000 hours from
now? Can this even be computed?

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.

In the clock mathematics, the numbers wrap around: 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, . . .

We will do the same thing for bases other than 12.
Also, we will typically use the representatives {0,1, . . . ,11}
rather than {1, . . . ,12}.

Question to ponder: What time will it be in 21000000 hours from
now? Can this even be computed?

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.

In the clock mathematics, the numbers wrap around: 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, . . .

We will do the same thing for bases other than 12.

Also, we will typically use the representatives {0,1, . . . ,11}
rather than {1, . . . ,12}.

Question to ponder: What time will it be in 21000000 hours from
now? Can this even be computed?

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.

In the clock mathematics, the numbers wrap around: 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, . . .

We will do the same thing for bases other than 12.
Also, we will typically use the representatives {0,1, . . . ,11}
rather than {1, . . . ,12}.

Question to ponder: What time will it be in 21000000 hours from
now? Can this even be computed?

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.

In the clock mathematics, the numbers wrap around: 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, . . .

We will do the same thing for bases other than 12.
Also, we will typically use the representatives {0,1, . . . ,11}
rather than {1, . . . ,12}.

Question to ponder: What time will it be in 21000000 hours from
now?

Can this even be computed?

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.

In the clock mathematics, the numbers wrap around: 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, . . .

We will do the same thing for bases other than 12.
Also, we will typically use the representatives {0,1, . . . ,11}
rather than {1, . . . ,12}.

Question to ponder: What time will it be in 21000000 hours from
now? Can this even be computed?

Modular Equivalence

Let m be a positive integer.

For the next few lectures, m will be called the modulus.

Say that x ≡ y (mod m) if m | x−y .
Read this as “x is equivalent to y , modulo m.”

Examples: What numbers are equivalent to 0, modulo 6?
I . . . ,−18,−12,−6,0,6,12,18,

In the “modulo 6” system, think of these numbers as the same.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.

Say that x ≡ y (mod m) if m | x−y .
Read this as “x is equivalent to y , modulo m.”

Examples: What numbers are equivalent to 0, modulo 6?
I . . . ,−18,−12,−6,0,6,12,18,

In the “modulo 6” system, think of these numbers as the same.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.

Say that x ≡ y (mod m) if m | x−y .

Read this as “x is equivalent to y , modulo m.”

Examples: What numbers are equivalent to 0, modulo 6?
I . . . ,−18,−12,−6,0,6,12,18,

In the “modulo 6” system, think of these numbers as the same.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.

Say that x ≡ y (mod m) if m | x−y .
Read this as “x is equivalent to y , modulo m.”

Examples: What numbers are equivalent to 0, modulo 6?
I . . . ,−18,−12,−6,0,6,12,18,

In the “modulo 6” system, think of these numbers as the same.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.

Say that x ≡ y (mod m) if m | x−y .
Read this as “x is equivalent to y , modulo m.”

Examples: What numbers are equivalent to 0, modulo 6?

I . . . ,−18,−12,−6,0,6,12,18,

In the “modulo 6” system, think of these numbers as the same.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.

Say that x ≡ y (mod m) if m | x−y .
Read this as “x is equivalent to y , modulo m.”

Examples: What numbers are equivalent to 0, modulo 6?
I . . . ,−18,−12,−6,0,6,12,18,

In the “modulo 6” system, think of these numbers as the same.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.

Say that x ≡ y (mod m) if m | x−y .
Read this as “x is equivalent to y , modulo m.”

Examples: What numbers are equivalent to 0, modulo 6?
I . . . ,−18,−12,−6,0,6,12,18,

In the “modulo 6” system, think of these numbers as the same.

Modular Equivalence: Addition, Multiplication

Theorem: If a,b,c,d ∈ Z with

a≡ c (mod m) and b ≡ d (mod m),

then a + b ≡ c + d (mod m) and ab ≡ cd (mod m).

Addition and multiplication work as usual in modular arithmetic.

Proof.
I By definition, m | a−c and m | b−d .
I So, m | a + b− (c + d).
I Also a = km + c and b = `m + d for some k , ` ∈ Z.
I So, ab = k`m2 + dkm + c`m + cd .
I Hence m | ab−cd .

Modular Equivalence: Addition, Multiplication

Theorem: If a,b,c,d ∈ Z with

a≡ c (mod m) and b ≡ d (mod m),

then a + b ≡ c + d (mod m) and ab ≡ cd (mod m).

Addition and multiplication work as usual in modular arithmetic.

Proof.
I By definition, m | a−c and m | b−d .
I So, m | a + b− (c + d).
I Also a = km + c and b = `m + d for some k , ` ∈ Z.
I So, ab = k`m2 + dkm + c`m + cd .
I Hence m | ab−cd .

Modular Equivalence: Addition, Multiplication

Theorem: If a,b,c,d ∈ Z with

a≡ c (mod m) and b ≡ d (mod m),

then a + b ≡ c + d (mod m) and ab ≡ cd (mod m).

Addition and multiplication work as usual in modular arithmetic.

Proof.

I By definition, m | a−c and m | b−d .
I So, m | a + b− (c + d).
I Also a = km + c and b = `m + d for some k , ` ∈ Z.
I So, ab = k`m2 + dkm + c`m + cd .
I Hence m | ab−cd .

Modular Equivalence: Addition, Multiplication

Theorem: If a,b,c,d ∈ Z with

a≡ c (mod m) and b ≡ d (mod m),

then a + b ≡ c + d (mod m) and ab ≡ cd (mod m).

Addition and multiplication work as usual in modular arithmetic.

Proof.
I By definition, m | a−c and m | b−d .

I So, m | a + b− (c + d).
I Also a = km + c and b = `m + d for some k , ` ∈ Z.
I So, ab = k`m2 + dkm + c`m + cd .
I Hence m | ab−cd .

Modular Equivalence: Addition, Multiplication

Theorem: If a,b,c,d ∈ Z with

a≡ c (mod m) and b ≡ d (mod m),

then a + b ≡ c + d (mod m) and ab ≡ cd (mod m).

Addition and multiplication work as usual in modular arithmetic.

Proof.
I By definition, m | a−c and m | b−d .
I So, m | a + b− (c + d).

I Also a = km + c and b = `m + d for some k , ` ∈ Z.
I So, ab = k`m2 + dkm + c`m + cd .
I Hence m | ab−cd .

Modular Equivalence: Addition, Multiplication

Theorem: If a,b,c,d ∈ Z with

a≡ c (mod m) and b ≡ d (mod m),

then a + b ≡ c + d (mod m) and ab ≡ cd (mod m).

Addition and multiplication work as usual in modular arithmetic.

Proof.
I By definition, m | a−c and m | b−d .
I So, m | a + b− (c + d).
I Also a = km + c and b = `m + d for some k , ` ∈ Z.

I So, ab = k`m2 + dkm + c`m + cd .
I Hence m | ab−cd .

Modular Equivalence: Addition, Multiplication

Theorem: If a,b,c,d ∈ Z with

a≡ c (mod m) and b ≡ d (mod m),

then a + b ≡ c + d (mod m) and ab ≡ cd (mod m).

Addition and multiplication work as usual in modular arithmetic.

Proof.
I By definition, m | a−c and m | b−d .
I So, m | a + b− (c + d).
I Also a = km + c and b = `m + d for some k , ` ∈ Z.
I So, ab = k`m2 + dkm + c`m + cd .

I Hence m | ab−cd .

Modular Equivalence: Addition, Multiplication

Theorem: If a,b,c,d ∈ Z with

a≡ c (mod m) and b ≡ d (mod m),

then a + b ≡ c + d (mod m) and ab ≡ cd (mod m).

Addition and multiplication work as usual in modular arithmetic.

Proof.
I By definition, m | a−c and m | b−d .
I So, m | a + b− (c + d).
I Also a = km + c and b = `m + d for some k , ` ∈ Z.
I So, ab = k`m2 + dkm + c`m + cd .
I Hence m | ab−cd .

Representatives

Theorem: Each integer x is equivalent to a unique member of
{0,1, . . . ,m−1} modulo m.

Proof.
I By Division Algorithm, x = qm + r for some q ∈ Z and

r ∈ {0,1, . . . ,m−1}.
I Thus m | x− r , i.e., x ≡ r (mod m).
I If x ≡ r1 (mod m) and x ≡ r2 (mod m), then (by

subtracting) r1− r2 ≡ 0 (mod m).
I But this is impossible if r1, r2 ∈ {0,1, . . . ,m−1} are distinct.

Now we can think of the numbers {0,1, . . . ,m−1} with addition
and multiplication (modulo m) as a number system.

This system is usually called Z/mZ.

Representatives

Theorem: Each integer x is equivalent to a unique member of
{0,1, . . . ,m−1} modulo m.

Proof.

I By Division Algorithm, x = qm + r for some q ∈ Z and
r ∈ {0,1, . . . ,m−1}.

I Thus m | x− r , i.e., x ≡ r (mod m).
I If x ≡ r1 (mod m) and x ≡ r2 (mod m), then (by

subtracting) r1− r2 ≡ 0 (mod m).
I But this is impossible if r1, r2 ∈ {0,1, . . . ,m−1} are distinct.

Now we can think of the numbers {0,1, . . . ,m−1} with addition
and multiplication (modulo m) as a number system.

This system is usually called Z/mZ.

Representatives

Theorem: Each integer x is equivalent to a unique member of
{0,1, . . . ,m−1} modulo m.

Proof.
I By Division Algorithm, x = qm + r for some q ∈ Z and

r ∈ {0,1, . . . ,m−1}.

I Thus m | x− r , i.e., x ≡ r (mod m).
I If x ≡ r1 (mod m) and x ≡ r2 (mod m), then (by

subtracting) r1− r2 ≡ 0 (mod m).
I But this is impossible if r1, r2 ∈ {0,1, . . . ,m−1} are distinct.

Now we can think of the numbers {0,1, . . . ,m−1} with addition
and multiplication (modulo m) as a number system.

This system is usually called Z/mZ.

Representatives

Theorem: Each integer x is equivalent to a unique member of
{0,1, . . . ,m−1} modulo m.

Proof.
I By Division Algorithm, x = qm + r for some q ∈ Z and

r ∈ {0,1, . . . ,m−1}.
I Thus m | x− r , i.e., x ≡ r (mod m).

I If x ≡ r1 (mod m) and x ≡ r2 (mod m), then (by
subtracting) r1− r2 ≡ 0 (mod m).

I But this is impossible if r1, r2 ∈ {0,1, . . . ,m−1} are distinct.

Now we can think of the numbers {0,1, . . . ,m−1} with addition
and multiplication (modulo m) as a number system.

This system is usually called Z/mZ.

Representatives

Theorem: Each integer x is equivalent to a unique member of
{0,1, . . . ,m−1} modulo m.

Proof.
I By Division Algorithm, x = qm + r for some q ∈ Z and

r ∈ {0,1, . . . ,m−1}.
I Thus m | x− r , i.e., x ≡ r (mod m).
I If x ≡ r1 (mod m) and x ≡ r2 (mod m), then (by

subtracting) r1− r2 ≡ 0 (mod m).

I But this is impossible if r1, r2 ∈ {0,1, . . . ,m−1} are distinct.

Now we can think of the numbers {0,1, . . . ,m−1} with addition
and multiplication (modulo m) as a number system.

This system is usually called Z/mZ.

Representatives

Theorem: Each integer x is equivalent to a unique member of
{0,1, . . . ,m−1} modulo m.

Proof.
I By Division Algorithm, x = qm + r for some q ∈ Z and

r ∈ {0,1, . . . ,m−1}.
I Thus m | x− r , i.e., x ≡ r (mod m).
I If x ≡ r1 (mod m) and x ≡ r2 (mod m), then (by

subtracting) r1− r2 ≡ 0 (mod m).
I But this is impossible if r1, r2 ∈ {0,1, . . . ,m−1} are distinct.

Now we can think of the numbers {0,1, . . . ,m−1} with addition
and multiplication (modulo m) as a number system.

This system is usually called Z/mZ.

Representatives

Theorem: Each integer x is equivalent to a unique member of
{0,1, . . . ,m−1} modulo m.

Proof.
I By Division Algorithm, x = qm + r for some q ∈ Z and

r ∈ {0,1, . . . ,m−1}.
I Thus m | x− r , i.e., x ≡ r (mod m).
I If x ≡ r1 (mod m) and x ≡ r2 (mod m), then (by

subtracting) r1− r2 ≡ 0 (mod m).
I But this is impossible if r1, r2 ∈ {0,1, . . . ,m−1} are distinct.

Now we can think of the numbers {0,1, . . . ,m−1} with addition
and multiplication (modulo m) as a number system.

This system is usually called Z/mZ.

Representatives

Theorem: Each integer x is equivalent to a unique member of
{0,1, . . . ,m−1} modulo m.

Proof.
I By Division Algorithm, x = qm + r for some q ∈ Z and

r ∈ {0,1, . . . ,m−1}.
I Thus m | x− r , i.e., x ≡ r (mod m).
I If x ≡ r1 (mod m) and x ≡ r2 (mod m), then (by

subtracting) r1− r2 ≡ 0 (mod m).
I But this is impossible if r1, r2 ∈ {0,1, . . . ,m−1} are distinct.

Now we can think of the numbers {0,1, . . . ,m−1} with addition
and multiplication (modulo m) as a number system.

This system is usually called Z/mZ.

Multiplication in Modular Arithmetic
Modulo 6:

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

Left: Going from left to right is multiplication by 3.

Right: Going from left to right is multiplication by 5.

Bijections

A function f : A→ B is:

I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)
(different inputs mapped to different outputs);

I surjective (or onto) if for every y ∈ B, there is an x ∈ A
with f (x) = y (every element of B is hit);

I bijective if it is both injective and surjective.
A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?

Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);
I surjective (or onto) if for every y ∈ B, there is an x ∈ A

with f (x) = y (every element of B is hit);
I bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?

Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);

I surjective (or onto) if for every y ∈ B, there is an x ∈ A
with f (x) = y (every element of B is hit);

I bijective if it is both injective and surjective.
A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?

Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);
I surjective (or onto) if for every y ∈ B, there is an x ∈ A

with f (x) = y

(every element of B is hit);
I bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?

Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);
I surjective (or onto) if for every y ∈ B, there is an x ∈ A

with f (x) = y (every element of B is hit);

I bijective if it is both injective and surjective.
A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?

Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);
I surjective (or onto) if for every y ∈ B, there is an x ∈ A

with f (x) = y (every element of B is hit);
I bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?

Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);
I surjective (or onto) if for every y ∈ B, there is an x ∈ A

with f (x) = y (every element of B is hit);
I bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?

Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);
I surjective (or onto) if for every y ∈ B, there is an x ∈ A

with f (x) = y (every element of B is hit);
I bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”.

That is,
f (x) := ax mod m.

When is this map bijective?

Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);
I surjective (or onto) if for every y ∈ B, there is an x ∈ A

with f (x) = y (every element of B is hit);
I bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?

Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);
I surjective (or onto) if for every y ∈ B, there is an x ∈ A

with f (x) = y (every element of B is hit);
I bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?

Greatest Common Divisor

For two integers a,b ∈ Z, the greatest common divisor (GCD)
of a and b is the largest number that divides both a and b.

Fact: Any common divisor of a and b also divides gcd(a,b).

(Proof: Next time!)

Greatest Common Divisor

For two integers a,b ∈ Z, the greatest common divisor (GCD)
of a and b is the largest number that divides both a and b.

Fact: Any common divisor of a and b also divides gcd(a,b).

(Proof: Next time!)

Greatest Common Divisor

For two integers a,b ∈ Z, the greatest common divisor (GCD)
of a and b is the largest number that divides both a and b.

Fact: Any common divisor of a and b also divides gcd(a,b).

(Proof: Next time!)

Existence of Multiplicative Inverses

Theorem: f (x) = ax mod m is bijective if and only if
gcd(a,m) = 1.

For a ∈ Z/mZ, a multiplicative inverse x is an element of
Z/mZ for which ax ≡ 1 (mod m).

Corollary: For all a ∈ Z/mZ, a has a multiplicative inverse
(necessarily unique) if and only if gcd(a,m) = 1.

(Proof: Next time!)

Existence of Multiplicative Inverses

Theorem: f (x) = ax mod m is bijective if and only if
gcd(a,m) = 1.

For a ∈ Z/mZ, a multiplicative inverse x is an element of
Z/mZ for which ax ≡ 1 (mod m).

Corollary: For all a ∈ Z/mZ, a has a multiplicative inverse
(necessarily unique) if and only if gcd(a,m) = 1.

(Proof: Next time!)

Existence of Multiplicative Inverses

Theorem: f (x) = ax mod m is bijective if and only if
gcd(a,m) = 1.

For a ∈ Z/mZ, a multiplicative inverse x is an element of
Z/mZ for which ax ≡ 1 (mod m).

Corollary: For all a ∈ Z/mZ, a has a multiplicative inverse
(necessarily unique) if and only if gcd(a,m) = 1.

(Proof: Next time!)

Existence of Multiplicative Inverses

Theorem: f (x) = ax mod m is bijective if and only if
gcd(a,m) = 1.

For a ∈ Z/mZ, a multiplicative inverse x is an element of
Z/mZ for which ax ≡ 1 (mod m).

Corollary: For all a ∈ Z/mZ, a has a multiplicative inverse
(necessarily unique) if and only if gcd(a,m) = 1.

(Proof: Next time!)

Summary

Graphs.
I Consequences of Euler’s Formula: non-planarity of K5 and

K3,3; planar graphs are sparse.
I Types of graphs: forests, hypercubes.
I Graph colorings: ≤ dmax + 1 for general graphs, 2 for

bipartite graphs.
I Hypercubes have Hamiltonian cycles.

Modular arithmetic.
I a≡ b (mod m) if m | a−b.
I Each number modulo m has a representative in
{0,1, . . . ,m−1}.

I Injections, surjections, bijections. . .
I a has a multiplicative inverse modulo m if and only if

gcd(a,m) = 1.

