Listing Bit Strings

List all bit strings of length 3.

Listing Bit Strings

List all bit strings of length 3.
$000,001,010,011,100,101,110,111$.

Listing Bit Strings

List all bit strings of length 3.
$000,001,010,011,100,101,110,111$.
Now do it while only flipping one bit at a time!

Listing Bit Strings

List all bit strings of length 3.
$000,001,010,011,100,101,110,111$.
Now do it while only flipping one bit at a time!
Today: Finish graphs and talk about numbers.

Forests

A forest is an acyclic graph.

Each connected component of a forest is a tree.

Forests

A forest is an acyclic graph.

Each connected component of a forest is a tree.
How many connected components in this graph?

Forests

A forest is an acyclic graph.

Each connected component of a forest is a tree.
How many connected components in this graph? 6.

Complete Graphs

The complete graph K_{n} has n vertices and all possible edges.

Complete Graphs

The complete graph K_{n} has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.

Complete Graphs

The complete graph K_{n} has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.

- The vertex set is $V=L \cup R$.

Complete Graphs

The complete graph K_{n} has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.

- The vertex set is $V=L \cup R$.
- Left nodes are only allowed to connect to right nodes; right nodes are only allowed to connect to left nodes.

Complete Graphs

The complete graph K_{n} has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.

- The vertex set is $V=L \cup R$.
- Left nodes are only allowed to connect to right nodes; right nodes are only allowed to connect to left nodes.
The complete bipartite graph $K_{m, n}$ has m left nodes, n right nodes, and all possible edges.

Edge Sparsity

How many edges does K_{n} have?

Edge Sparsity

How many edges does K_{n} have?

- Handshaking Lemma: $\sum_{v \in V} \operatorname{deg} v=2|E|$.

Edge Sparsity

How many edges does K_{n} have?

- Handshaking Lemma: $\sum_{v \in V} \operatorname{deg} v=2|E|$.
- $\sum_{v \in V} \operatorname{deg} v=n(n-1)$.

Edge Sparsity

How many edges does K_{n} have?

- Handshaking Lemma: $\sum_{v \in V} \operatorname{deg} v=2|E|$.
- $\sum_{v \in V} \operatorname{deg} v=n(n-1)$.
- So $|E|=n(n-1) / 2$.

Edge Sparsity

How many edges does K_{n} have?

- Handshaking Lemma: $\sum_{v \in V} \operatorname{deg} v=2|E|$.
- $\sum_{v \in V} \operatorname{deg} v=n(n-1)$.
- So $|E|=n(n-1) / 2$.

Asymptotic notation from CS $61 \mathrm{~A} / \mathrm{B}:|E|=\Theta\left(n^{2}\right)$.

Edge Sparsity

How many edges does K_{n} have?

- Handshaking Lemma: $\sum_{v \in V} \operatorname{deg} v=2|E|$.
- $\sum_{v \in V} \operatorname{deg} v=n(n-1)$.
- So $|E|=n(n-1) / 2$.

Asymptotic notation from CS $61 \mathrm{~A} / \mathrm{B}:|E|=\Theta\left(n^{2}\right)$.
For a tree on n vertices, $|E|=n-1=\Theta(n)$.

Edge Sparsity

How many edges does K_{n} have?

- Handshaking Lemma: $\sum_{v \in V} \operatorname{deg} v=2|E|$.
- $\sum_{v \in V} \operatorname{deg} v=n(n-1)$.
- So $|E|=n(n-1) / 2$.

Asymptotic notation from CS 61A/B: $|E|=\Theta\left(n^{2}\right)$.
For a tree on n vertices, $|E|=n-1=\Theta(n)$.
The complete graph is called dense; trees are called sparse.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides".

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides". So, if we add up all of the sides, we get $2 e$.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides". So, if we add up all of the sides, we get $2 e$.
- Each face has at least three sides.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides". So, if we add up all of the sides, we get $2 e$.
- Each face has at least three sides. So the total number of sides is at least $3 f$.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides". So, if we add up all of the sides, we get $2 e$.
- Each face has at least three sides. So the total number of sides is at least $3 f$.
- Thus, $2 e \geq 3 f$.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides". So, if we add up all of the sides, we get $2 e$.
- Each face has at least three sides. So the total number of sides is at least $3 f$.
- Thus, $2 e \geq 3 f$.
- Euler's Formula: $v+f=e+2$.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides". So, if we add up all of the sides, we get $2 e$.
- Each face has at least three sides. So the total number of sides is at least $3 f$.
- Thus, $2 e \geq 3 f$.
- Euler's Formula: $v+f=e+2$.
- Rearrange: $e \leq 3 v-6$.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides". So, if we add up all of the sides, we get $2 e$.
- Each face has at least three sides. So the total number of sides is at least $3 f$.
- Thus, $2 e \geq 3 f$.
- Euler's Formula: $v+f=e+2$.
- Rearrange: $e \leq 3 v-6 . \quad \square$

If the graph has n vertices, then $|E|=\Theta(n)$.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides". So, if we add up all of the sides, we get $2 e$.
- Each face has at least three sides. So the total number of sides is at least $3 f$.
- Thus, $2 e \geq 3 f$.
- Euler's Formula: $v+f=e+2$.
- Rearrange: $e \leq 3 v-6 . \quad \square$

If the graph has n vertices, then $|E|=\Theta(n)$. Like trees.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \geq 3$, we have $e \leq 3 v-6$.

Proof.

- Each edge has two "sides". So, if we add up all of the sides, we get $2 e$.
- Each face has at least three sides. So the total number of sides is at least $3 f$.
- Thus, $2 e \geq 3 f$.
- Euler's Formula: $v+f=e+2$.
- Rearrange: $e \leq 3 v-6 . \quad \square$

If the graph has n vertices, then $|E|=\Theta(n)$. Like trees.
Planar graphs are sparse.

K_{5} Is Not Planar

How many edges does K_{5} have?

K_{5} Is Not Planar

How many edges does K_{5} have? 10.

K_{5} Is Not Planar

How many edges does K_{5} have? 10.

- $e=10$.

K_{5} Is Not Planar

How many edges does K_{5} have? 10.

- $e=10$.
- $3 v-6=9$.

K_{5} Is Not Planar

How many edges does K_{5} have? 10.

- $e=10$.
- $3 v-6=9$.

This violates $e \leq 3 v-6$ for planar graphs.

K_{5} Is Not Planar

How many edges does K_{5} have? 10.

- $e=10$.
- $3 v-6=9$.

This violates $e \leq 3 v-6$ for planar graphs.
K_{5} is not planar.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges?

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices?

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So $3 v-6=12$.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So $3 v-6=12$.
The previous proof fails.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So $3 v-6=12$.
The previous proof fails. Make it stronger!

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So $3 v-6=12$.
The previous proof fails. Make it stronger!

- The total number of sides is $2 e$.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So $3 v-6=12$.
The previous proof fails. Make it stronger!

- The total number of sides is $2 e$.
- Each face has at least three sides.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So $3 v-6=12$.
The previous proof fails. Make it stronger!

- The total number of sides is $2 e$.
- Each face has at least three sides. Actually, at least four!

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So $3 v-6=12$.
The previous proof fails. Make it stronger!

- The total number of sides is $2 e$.
- Each face has at least three sides. Actually, at least four!
- In a bipartite graph, cycles are of even length.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So $3 v-6=12$.
The previous proof fails. Make it stronger!

- The total number of sides is $2 e$.
- Each face has at least three sides. Actually, at least four!
- In a bipartite graph, cycles are of even length.
- So, $2 e \geq 4 f$ and $v+f=e+2$, so rearranging gives $e \leq 2 v-4$ for bipartite planar graphs.

$K_{3,3}$ Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So $3 v-6=12$.
The previous proof fails. Make it stronger!

- The total number of sides is $2 e$.
- Each face has at least three sides. Actually, at least four!
- In a bipartite graph, cycles are of even length.
- So, $2 e \geq 4 f$ and $v+f=e+2$, so rearranging gives $e \leq 2 v-4$ for bipartite planar graphs.
Conclusion: $K_{3,3}$ is not planar.

Why K_{5} and $K_{3,3}$?

Why did we show that K_{5} and $K_{3,3}$ are non-planar?

Why K_{5} and $K_{3,3}$?

Why did we show that K_{5} and $K_{3,3}$ are non-planar?
Kuratowski's Theorem: A graph is non-planar if and only if it "contains" K_{5} or $K_{3,3}$.

Why K_{5} and $K_{3,3}$?

Why did we show that K_{5} and $K_{3,3}$ are non-planar?
Kuratowski's Theorem: A graph is non-planar if and only if it "contains" K_{5} or $K_{3,3}$.

- The word "contains" is tricky...

Why K_{5} and $K_{3,3}$?

Why did we show that K_{5} and $K_{3,3}$ are non-planar?
Kuratowski's Theorem: A graph is non-planar if and only if it "contains" K_{5} or $K_{3,3}$.

- The word "contains" is tricky. . . do not worry about the details.

Why K_{5} and $K_{3,3}$?

Why did we show that K_{5} and $K_{3,3}$ are non-planar?
Kuratowski's Theorem: A graph is non-planar if and only if it "contains" K_{5} or $K_{3,3}$.

- The word "contains" is tricky... do not worry about the details. Not important for the course.

Why K_{5} and $K_{3,3}$?

Why did we show that K_{5} and $K_{3,3}$ are non-planar?
Kuratowski's Theorem: A graph is non-planar if and only if it "contains" K_{5} or $K_{3,3}$.

- The word "contains" is tricky... do not worry about the details. Not important for the course.
- Content of theorem: essentially K_{5} and $K_{3,3}$ are the only obstructions to non-planarity.

Graph Coloring

A (vertex) coloring of a graph G is an assignment of colors to vertices so that no two colors are joined by an edge.

Graph Coloring

A (vertex) coloring of a graph G is an assignment of colors to vertices so that no two colors are joined by an edge.

Why do we care about graph coloring?

Graph Coloring

A (vertex) coloring of a graph G is an assignment of colors to vertices so that no two colors are joined by an edge.

Why do we care about graph coloring?

- Edges are used to encode constraints.

Graph Coloring

A (vertex) coloring of a graph G is an assignment of colors to vertices so that no two colors are joined by an edge.

Why do we care about graph coloring?

- Edges are used to encode constraints.
- Graph colorings can be used for scheduling, etc.

Coloring with Maximum Degree +1

Theorem. Let $d_{\max }$ be the maximum degree of any vertex in G. Then G can be colored with $d_{\text {max }}+1$ colors.

Coloring with Maximum Degree +1

Theorem. Let $d_{\max }$ be the maximum degree of any vertex in G. Then G can be colored with $d_{\text {max }}+1$ colors.

Proof.

Coloring with Maximum Degree +1

Theorem. Let $d_{\max }$ be the maximum degree of any vertex in G. Then G can be colored with $d_{\text {max }}+1$ colors.

Proof.

- Use induction on $|V|$.

Coloring with Maximum Degree +1

Theorem. Let $d_{\max }$ be the maximum degree of any vertex in G. Then G can be colored with $d_{\text {max }}+1$ colors.

Proof.

- Use induction on $|V|$.
- For $|V| \geq 2$, remove a vertex v.

Coloring with Maximum Degree +1

Theorem. Let $d_{\max }$ be the maximum degree of any vertex in G. Then G can be colored with $d_{\text {max }}+1$ colors.

Proof.

- Use induction on $|V|$.
- For $|V| \geq 2$, remove a vertex v.
- Inductively color the resulting graph with $d_{\text {max }}+1$ colors.

Coloring with Maximum Degree +1

Theorem. Let $d_{\max }$ be the maximum degree of any vertex in G. Then G can be colored with $d_{\text {max }}+1$ colors.

Proof.

- Use induction on $|V|$.
- For $|V| \geq 2$, remove a vertex v.
- Inductively color the resulting graph with $d_{\max }+1$ colors.
- Add v back in.

Coloring with Maximum Degree +1

Theorem. Let $d_{\max }$ be the maximum degree of any vertex in G. Then G can be colored with $d_{\text {max }}+1$ colors.

Proof.

- Use induction on $|V|$.
- For $|V| \geq 2$, remove a vertex v.
- Inductively color the resulting graph with $d_{\max }+1$ colors.
- Add v back in.
- Since v has at most $d_{\text {max }}$ neighbors which use at most $d_{\text {max }}$ colors, use an unused color to color v.

Coloring with Maximum Degree +1

Theorem. Let $d_{\max }$ be the maximum degree of any vertex in G. Then G can be colored with $d_{\text {max }}+1$ colors.

Proof.

- Use induction on $|V|$.
- For $|V| \geq 2$, remove a vertex v.
- Inductively color the resulting graph with $d_{\max }+1$ colors.
- Add v back in.
- Since v has at most $d_{\text {max }}$ neighbors which use at most $d_{\text {max }}$ colors, use an unused color to color v.
For some types of graphs, this bound is very bad.

Bipartite Graphs Are 2-Colorable

Theorem: \mathcal{G} is bipartite $\Longleftrightarrow G$ can be 2-colored.

Bipartite Graphs Are 2-Colorable

Theorem: \mathcal{G} is bipartite $\Longleftrightarrow G$ can be 2-colored.
Proof.

Bipartite Graphs Are 2-Colorable

Theorem: \mathcal{G} is bipartite $\Longleftrightarrow G$ can be 2-colored.
Proof.

- If G is bipartite with $V=L \cup R$, color vertices in L blue and vertices in R red.

Bipartite Graphs Are 2-Colorable

Theorem: \mathcal{G} is bipartite $\Longleftrightarrow G$ can be 2-colored.
Proof.

- If G is bipartite with $V=L \cup R$, color vertices in L blue and vertices in R red.
- Conversely, suppose G is 2 -colorable.

Bipartite Graphs Are 2-Colorable

Theorem: \mathcal{G} is bipartite $\Longleftrightarrow G$ can be 2-colored.
Proof.

- If G is bipartite with $V=L \cup R$, color vertices in L blue and vertices in R red.
- Conversely, suppose G is 2-colorable.
- In the 2 -coloring of G, the red vertices have no edges between them, and similarly for blue vertices.

Bipartite Graphs Are 2-Colorable

Theorem: \mathcal{G} is bipartite $\Longleftrightarrow G$ can be 2-colored.
Proof.

- If G is bipartite with $V=L \cup R$, color vertices in L blue and vertices in R red.
- Conversely, suppose G is 2-colorable.
- In the 2 -coloring of G, the red vertices have no edges between them, and similarly for blue vertices.
- So the graph is bipartite.

Bipartite Graphs Are 2-Colorable

Theorem: \mathcal{G} is bipartite $\Longleftrightarrow G$ can be 2-colored.
Proof.

- If G is bipartite with $V=L \cup R$, color vertices in L blue and vertices in R red.
- Conversely, suppose G is 2-colorable.
- In the 2 -coloring of G, the red vertices have no edges between them, and similarly for blue vertices.
- So the graph is bipartite.

Consider $K_{n, n}$.

Bipartite Graphs Are 2-Colorable

Theorem: \mathcal{G} is bipartite $\Longleftrightarrow G$ can be 2-colored.
Proof.

- If G is bipartite with $V=L \cup R$, color vertices in L blue and vertices in R red.
- Conversely, suppose G is 2-colorable.
- In the 2 -coloring of G, the red vertices have no edges between them, and similarly for blue vertices.
- So the graph is bipartite.

Consider $K_{n, n}$. Then $d_{\max }+1=n+1$, but it can be 2 -colored.

Graph Coloring \& Planarity

Consider a colored map and its planar dual:
(Ignore the infinite face.)

Graph Coloring \& Planarity

Consider a colored map and its planar dual:

(Ignore the infinite face.)
Coloring a map so no adjacent regions have the same color is equivalent to coloring a planar graph.

Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

- The proof required a human to narrow down the cases, and a computer to exhaustively check the remaining cases.

Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

- The proof required a human to narrow down the cases, and a computer to exhaustively check the remaining cases.
- The proof has not yet been simplified to the point where a human can easily read over it.

Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

- The proof required a human to narrow down the cases, and a computer to exhaustively check the remaining cases.
- The proof has not yet been simplified to the point where a human can easily read over it.
- Note: K_{5} requires 5 colors.

Hypercubes

The hypercube of dimension d, Q_{d}, where d is a positive integer, has:

- vertices which are labeled by length- d bit strings, and
- an edge between two vertices if and only if they differ in exactly one bit.

Hypercubes

The hypercube of dimension d, Q_{d}, where d is a positive integer, has:

- vertices which are labeled by length- d bit strings, and
- an edge between two vertices if and only if they differ in exactly one bit.
Here is a picture of Q_{3}.

Hypercube Facts

The 0 -face is the part of the hypercube whose vertices begin with 0 .

Hypercube Facts

The 0 -face is the part of the hypercube whose vertices begin with 0 . Similarly for the 1 -face.

Hypercube Facts

The 0-face is the part of the hypercube whose vertices begin with 0 . Similarly for the 1 -face.

The 0 -face is a lower-dimensional hypercube.

Hypercube Facts

The 0 -face is the part of the hypercube whose vertices begin with 0 . Similarly for the 1 -face.

The 0-face is a lower-dimensional hypercube. Induction!

Hypercube Facts

The 0 -face is the part of the hypercube whose vertices begin with 0 . Similarly for the 1 -face.

The 0-face is a lower-dimensional hypercube. Induction!
Number of vertices?

Hypercube Facts

The 0 -face is the part of the hypercube whose vertices begin with 0 . Similarly for the 1 -face.

The 0-face is a lower-dimensional hypercube. Induction!
Number of vertices? 2^{d}.

Hypercube Facts

The 0 -face is the part of the hypercube whose vertices begin with 0 . Similarly for the 1 -face.

The 0-face is a lower-dimensional hypercube. Induction!
Number of vertices? 2^{d}.
Number of edges?

Hypercube Facts

The 0 -face is the part of the hypercube whose vertices begin with 0 . Similarly for the 1 -face.

The 0-face is a lower-dimensional hypercube. Induction!
Number of vertices? 2^{d}.
Number of edges? $\sum_{v \in V} \operatorname{deg} v=d 2^{d}$, so $|E|=d 2^{d-1}$.

Hypercube Facts

The 0 -face is the part of the hypercube whose vertices begin with 0 . Similarly for the 1 -face.

The 0-face is a lower-dimensional hypercube. Induction!
Number of vertices? 2^{d}.
Number of edges? $\sum_{v \in V} \operatorname{deg} v=d 2^{d}$, so $|E|=d 2^{d-1}$.
So for a hypercube with n vertices, $|E|=\Theta(n \log n)$.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.
Proof.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.
Proof.

- Color all vertices with an even number of 0s blue and an odd number of Os orange.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.
Proof.

- Color all vertices with an even number of 0s blue and an odd number of Os orange.
- Since each edge flips a bit, edges only connect vertices of different parity. \square

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.
Proof.

- Color all vertices with an even number of 0s blue and an odd number of Os orange.
- Since each edge flips a bit, edges only connect vertices of different parity. \square
Inductive Proof.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.
Proof.

- Color all vertices with an even number of 0s blue and an odd number of Os orange.
- Since each edge flips a bit, edges only connect vertices of different parity. \square
Inductive Proof.
- Check the base case.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.
Proof.

- Color all vertices with an even number of 0s blue and an odd number of Os orange.
- Since each edge flips a bit, edges only connect vertices of different parity. \square
Inductive Proof.
- Check the base case.
- Inductively color the 0-face.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.
Proof.

- Color all vertices with an even number of 0s blue and an odd number of Os orange.
- Since each edge flips a bit, edges only connect vertices of different parity. \square
Inductive Proof.
- Check the base case.
- Inductively color the 0-face.
- If $0 x$ is a vertex colored blue, color the vertex $1 x$ orange and if $0 x$ is orange, color $1 x$ blue. \square

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

- Length $1: 0,1$.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

- Length 1: 0, 1.
- Length 2: Length-1 sequence with 0s prepended.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

- Length 1: 0, 1.
- Length 2: Length-1 sequence with 0s prepended. 00, 01.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

- Length 1: 0, 1.
- Length 2: Length-1 sequence with 0s prepended. 00, 01. Length -1 sequence backwards with 1 s prepended.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

- Length 1: 0, 1.
- Length 2: Length-1 sequence with 0s prepended. 00, 01. Length-1 sequence backwards with 1s prepended. 11, 10.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

- Length 1: 0, 1.
- Length 2: Length-1 sequence with 0s prepended. 00, 01. Length-1 sequence backwards with 1s prepended. 11, 10. Put it together: 00, 01, 11, 10.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

- Length 1: 0, 1.
- Length 2: Length-1 sequence with 0s prepended. 00, 01. Length-1 sequence backwards with 1s prepended. 11, 10. Put it together: 00, 01, 11, 10.
- Length 3: 000, 001, 011, 010, 110, 111, 101, 100.

Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.
A Hamiltonian cycle is a cycle that includes every vertex exactly once.

Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

- Length 1: 0, 1.
- Length 2: Length-1 sequence with 0s prepended. 00, 01. Length-1 sequence backwards with 1s prepended. 11, 10. Put it together: 00, 01, 11, 10.
- Length 3: 000, 001, 011, 010, 110, 111, 101, 100.

Hypercubes have Hamiltonian cycles.

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours?

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.
In the clock mathematics, the numbers wrap around: 1, 2, 3, 4, $5,6,7,8,9,10,11,12,1,2,3, \ldots$

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.
In the clock mathematics, the numbers wrap around: 1, 2, 3, 4, $5,6,7,8,9,10,11,12,1,2,3, \ldots$

We will do the same thing for bases other than 12.

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.
In the clock mathematics, the numbers wrap around: 1, 2, 3, 4, $5,6,7,8,9,10,11,12,1,2,3, \ldots$

We will do the same thing for bases other than 12. Also, we will typically use the representatives $\{0,1, \ldots, 11\}$ rather than $\{1, \ldots, 12\}$.

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.
In the clock mathematics, the numbers wrap around: 1, 2, 3, 4, $5,6,7,8,9,10,11,12,1,2,3, \ldots$

We will do the same thing for bases other than 12. Also, we will typically use the representatives $\{0,1, \ldots, 11\}$ rather than $\{1, \ldots, 12\}$.

Question to ponder: What time will it be in $2^{1000000}$ hours from now?

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.
In the clock mathematics, the numbers wrap around: 1, 2, 3, 4, $5,6,7,8,9,10,11,12,1,2,3, \ldots$

We will do the same thing for bases other than 12. Also, we will typically use the representatives $\{0,1, \ldots, 11\}$ rather than $\{1, \ldots, 12\}$.

Question to ponder: What time will it be in $2^{1000000}$ hours from now? Can this even be computed?

Modular Equivalence

Let m be a positive integer.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.
Say that $x \equiv y(\bmod m)$ if $m \mid x-y$.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.
Say that $x \equiv y(\bmod m)$ if $m \mid x-y$.
Read this as " x is equivalent to y, modulo m."

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.
Say that $x \equiv y(\bmod m)$ if $m \mid x-y$.
Read this as " x is equivalent to y, modulo m."
Examples: What numbers are equivalent to 0 , modulo 6 ?

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.
Say that $x \equiv y(\bmod m)$ if $m \mid x-y$.
Read this as " x is equivalent to y, modulo m."
Examples: What numbers are equivalent to 0 , modulo 6 ?

- $\ldots,-18,-12,-6,0,6,12,18, \ldots$.

Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.
Say that $x \equiv y(\bmod m)$ if $m \mid x-y$.
Read this as " x is equivalent to y, modulo m."
Examples: What numbers are equivalent to 0 , modulo 6 ?

- $\ldots,-18,-12,-6,0,6,12,18, \ldots$.

In the "modulo 6" system, think of these numbers as the same.

Modular Equivalence: Addition, Multiplication

Theorem: If $a, b, c, d \in \mathbb{Z}$ with

$$
a \equiv c \quad(\bmod m) \quad \text { and } \quad b \equiv d \quad(\bmod m)
$$

then $a+b \equiv c+d(\bmod m)$ and $a b \equiv c d(\bmod m)$.

Modular Equivalence: Addition, Multiplication

Theorem: If $a, b, c, d \in \mathbb{Z}$ with

$$
a \equiv c \quad(\bmod m) \quad \text { and } \quad b \equiv d \quad(\bmod m)
$$

then $a+b \equiv c+d(\bmod m)$ and $a b \equiv c d(\bmod m)$.
Addition and multiplication work as usual in modular arithmetic.

Modular Equivalence: Addition, Multiplication

Theorem: If $a, b, c, d \in \mathbb{Z}$ with

$$
a \equiv c \quad(\bmod m) \quad \text { and } \quad b \equiv d \quad(\bmod m)
$$

then $a+b \equiv c+d(\bmod m)$ and $a b \equiv c d(\bmod m)$.
Addition and multiplication work as usual in modular arithmetic.
Proof.

Modular Equivalence: Addition, Multiplication

Theorem: If $a, b, c, d \in \mathbb{Z}$ with

$$
a \equiv c \quad(\bmod m) \quad \text { and } \quad b \equiv d \quad(\bmod m)
$$

then $a+b \equiv c+d(\bmod m)$ and $a b \equiv c d(\bmod m)$.
Addition and multiplication work as usual in modular arithmetic.
Proof.

- By definition, $m \mid a-c$ and $m \mid b-d$.

Modular Equivalence: Addition, Multiplication

Theorem: If $a, b, c, d \in \mathbb{Z}$ with

$$
a \equiv c \quad(\bmod m) \quad \text { and } \quad b \equiv d \quad(\bmod m)
$$

then $a+b \equiv c+d(\bmod m)$ and $a b \equiv c d(\bmod m)$.
Addition and multiplication work as usual in modular arithmetic.
Proof.

- By definition, $m \mid a-c$ and $m \mid b-d$.
- So, $m \mid a+b-(c+d)$.

Modular Equivalence: Addition, Multiplication

Theorem: If $a, b, c, d \in \mathbb{Z}$ with

$$
a \equiv c \quad(\bmod m) \quad \text { and } \quad b \equiv d \quad(\bmod m)
$$

then $a+b \equiv c+d(\bmod m)$ and $a b \equiv c d(\bmod m)$.
Addition and multiplication work as usual in modular arithmetic.
Proof.

- By definition, $m \mid a-c$ and $m \mid b-d$.
- So, $m \mid a+b-(c+d)$.
- Also $a=k m+c$ and $b=\ell m+d$ for some $k, \ell \in \mathbb{Z}$.

Modular Equivalence: Addition, Multiplication

Theorem: If $a, b, c, d \in \mathbb{Z}$ with

$$
a \equiv c \quad(\bmod m) \quad \text { and } \quad b \equiv d \quad(\bmod m)
$$

then $a+b \equiv c+d(\bmod m)$ and $a b \equiv c d(\bmod m)$.
Addition and multiplication work as usual in modular arithmetic.
Proof.

- By definition, $m \mid a-c$ and $m \mid b-d$.
- So, $m \mid a+b-(c+d)$.
- Also $a=k m+c$ and $b=\ell m+d$ for some $k, \ell \in \mathbb{Z}$.
- So, $a b=k \ell m^{2}+d k m+c \ell m+c d$.

Modular Equivalence: Addition, Multiplication

Theorem: If $a, b, c, d \in \mathbb{Z}$ with

$$
a \equiv c \quad(\bmod m) \quad \text { and } \quad b \equiv d \quad(\bmod m)
$$

then $a+b \equiv c+d(\bmod m)$ and $a b \equiv c d(\bmod m)$.
Addition and multiplication work as usual in modular arithmetic.
Proof.

- By definition, $m \mid a-c$ and $m \mid b-d$.
- So, $m \mid a+b-(c+d)$.
- Also $a=k m+c$ and $b=\ell m+d$ for some $k, \ell \in \mathbb{Z}$.
- So, $a b=k \ell m^{2}+d k m+c \ell m+c d$.
- Hence $m \mid a b-c d$.

Representatives

Theorem: Each integer x is equivalent to a unique member of $\{0,1, \ldots, m-1\}$ modulo m.

Representatives

Theorem: Each integer x is equivalent to a unique member of $\{0,1, \ldots, m-1\}$ modulo m.

Proof.

Representatives

Theorem: Each integer x is equivalent to a unique member of $\{0,1, \ldots, m-1\}$ modulo m.

Proof.

- By Division Algorithm, $x=q m+r$ for some $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, m-1\}$.

Representatives

Theorem: Each integer x is equivalent to a unique member of $\{0,1, \ldots, m-1\}$ modulo m.

Proof.

- By Division Algorithm, $x=q m+r$ for some $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, m-1\}$.
- Thus $m \mid x-r$, i.e., $x \equiv r(\bmod m)$.

Representatives

Theorem: Each integer x is equivalent to a unique member of $\{0,1, \ldots, m-1\}$ modulo m.

Proof.

- By Division Algorithm, $x=q m+r$ for some $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, m-1\}$.
- Thus $m \mid x-r$, i.e., $x \equiv r(\bmod m)$.
- If $x \equiv r_{1}(\bmod m)$ and $x \equiv r_{2}(\bmod m)$, then $(b y$ subtracting) $r_{1}-r_{2} \equiv 0(\bmod m)$.

Representatives

Theorem: Each integer x is equivalent to a unique member of $\{0,1, \ldots, m-1\}$ modulo m.

Proof.

- By Division Algorithm, $x=q m+r$ for some $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, m-1\}$.
- Thus $m \mid x-r$, i.e., $x \equiv r(\bmod m)$.
- If $x \equiv r_{1}(\bmod m)$ and $x \equiv r_{2}(\bmod m)$, then (by subtracting) $r_{1}-r_{2} \equiv 0(\bmod m)$.
- But this is impossible if $r_{1}, r_{2} \in\{0,1, \ldots, m-1\}$ are distinct.

Representatives

Theorem: Each integer x is equivalent to a unique member of $\{0,1, \ldots, m-1\}$ modulo m.

Proof.

- By Division Algorithm, $x=q m+r$ for some $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, m-1\}$.
- Thus $m \mid x-r$, i.e., $x \equiv r(\bmod m)$.
- If $x \equiv r_{1}(\bmod m)$ and $x \equiv r_{2}(\bmod m)$, then $(b y$ subtracting) $r_{1}-r_{2} \equiv 0(\bmod m)$.
- But this is impossible if $r_{1}, r_{2} \in\{0,1, \ldots, m-1\}$ are distinct. \square

Now we can think of the numbers $\{0,1, \ldots, m-1\}$ with addition and multiplication (modulo m) as a number system.

Representatives

Theorem: Each integer x is equivalent to a unique member of $\{0,1, \ldots, m-1\}$ modulo m.

Proof.

- By Division Algorithm, $x=q m+r$ for some $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, m-1\}$.
- Thus $m \mid x-r$, i.e., $x \equiv r(\bmod m)$.
- If $x \equiv r_{1}(\bmod m)$ and $x \equiv r_{2}(\bmod m)$, then (by subtracting) $r_{1}-r_{2} \equiv 0(\bmod m)$.
- But this is impossible if $r_{1}, r_{2} \in\{0,1, \ldots, m-1\}$ are distinct. \square

Now we can think of the numbers $\{0,1, \ldots, m-1\}$ with addition and multiplication (modulo m) as a number system.

This system is usually called $\mathbb{Z} / m \mathbb{Z}$.

Multiplication in Modular Arithmetic

Modulo 6:

Left: Going from left to right is multiplication by 3.
Right: Going from left to right is multiplication by 5 .

Bijections

A function $f: A \rightarrow B$ is:

Bijections

A function $f: A \rightarrow B$ is:

- injective (or one-to-one) if for $x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$

Bijections

A function $f: A \rightarrow B$ is:

- injective (or one-to-one) if for $x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (different inputs mapped to different outputs);

Bijections

A function $f: A \rightarrow B$ is:

- injective (or one-to-one) if for $x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (different inputs mapped to different outputs);
- surjective (or onto) if for every $y \in B$, there is an $x \in A$ with $f(x)=y$

Bijections

A function $f: A \rightarrow B$ is:

- injective (or one-to-one) if for $x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (different inputs mapped to different outputs);
- surjective (or onto) if for every $y \in B$, there is an $x \in A$ with $f(x)=y$ (every element of B is hit);

Bijections

A function $f: A \rightarrow B$ is:

- injective (or one-to-one) if for $x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (different inputs mapped to different outputs);
- surjective (or onto) if for every $y \in B$, there is an $x \in A$ with $f(x)=y$ (every element of B is hit);
- bijective if it is both injective and surjective.

Bijections

A function $f: A \rightarrow B$ is:

- injective (or one-to-one) if for $x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (different inputs mapped to different outputs);
- surjective (or onto) if for every $y \in B$, there is an $x \in A$ with $f(x)=y$ (every element of B is hit);
- bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Bijections

A function $f: A \rightarrow B$ is:

- injective (or one-to-one) if for $x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (different inputs mapped to different outputs);
- surjective (or onto) if for every $y \in B$, there is an $x \in A$ with $f(x)=y$ (every element of B is hit);
- bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.
Consider the map "multiplication by a, modulo m ".

Bijections

A function $f: A \rightarrow B$ is:

- injective (or one-to-one) if for $x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (different inputs mapped to different outputs);
- surjective (or onto) if for every $y \in B$, there is an $x \in A$ with $f(x)=y$ (every element of B is hit);
- bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.
Consider the map "multiplication by a, modulo m ". That is, $f(x):=a x \bmod m$.

Bijections

A function $f: A \rightarrow B$ is:

- injective (or one-to-one) if for $x_{1} \neq x_{2}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$ (different inputs mapped to different outputs);
- surjective (or onto) if for every $y \in B$, there is an $x \in A$ with $f(x)=y$ (every element of B is hit);
- bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.
Consider the map "multiplication by a, modulo m ". That is, $f(x):=a x \bmod m$.

When is this map bijective?

Greatest Common Divisor

For two integers $a, b \in \mathbb{Z}$, the greatest common divisor (GCD) of a and b is the largest number that divides both a and b.

Greatest Common Divisor

For two integers $a, b \in \mathbb{Z}$, the greatest common divisor (GCD) of a and b is the largest number that divides both a and b.

Fact: Any common divisor of a and b also divides $\operatorname{gcd}(a, b)$.

Greatest Common Divisor

For two integers $a, b \in \mathbb{Z}$, the greatest common divisor (GCD) of a and b is the largest number that divides both a and b.

Fact: Any common divisor of a and b also divides $\operatorname{gcd}(a, b)$.
(Proof: Next time!)

Existence of Multiplicative Inverses

Theorem: $f(x)=a x \bmod m$ is bijective if and only if $\operatorname{gcd}(a, m)=1$.

Existence of Multiplicative Inverses

Theorem: $f(x)=a x \bmod m$ is bijective if and only if $\operatorname{gcd}(a, m)=1$.

For $a \in \mathbb{Z} / m \mathbb{Z}$, a multiplicative inverse x is an element of $\mathbb{Z} / m \mathbb{Z}$ for which $a x \equiv 1(\bmod m)$.

Existence of Multiplicative Inverses

Theorem: $f(x)=a x \bmod m$ is bijective if and only if $\operatorname{gcd}(a, m)=1$.

For $a \in \mathbb{Z} / m \mathbb{Z}$, a multiplicative inverse x is an element of $\mathbb{Z} / m \mathbb{Z}$ for which $a x \equiv 1(\bmod m)$.

Corollary: For all $a \in \mathbb{Z} / m \mathbb{Z}$, a has a multiplicative inverse (necessarily unique) if and only if $\operatorname{gcd}(a, m)=1$.

Existence of Multiplicative Inverses

Theorem: $f(x)=a x \bmod m$ is bijective if and only if $\operatorname{gcd}(a, m)=1$.

For $a \in \mathbb{Z} / m \mathbb{Z}$, a multiplicative inverse x is an element of $\mathbb{Z} / m \mathbb{Z}$ for which $a x \equiv 1(\bmod m)$.

Corollary: For all $a \in \mathbb{Z} / m \mathbb{Z}$, a has a multiplicative inverse (necessarily unique) if and only if $\operatorname{gcd}(a, m)=1$.
(Proof: Next time!)

Summary

Graphs.

- Consequences of Euler's Formula: non-planarity of K_{5} and $K_{3,3}$; planar graphs are sparse.
- Types of graphs: forests, hypercubes.
- Graph colorings: $\leq d_{\max }+1$ for general graphs, 2 for bipartite graphs.
- Hypercubes have Hamiltonian cycles.

Modular arithmetic.

- $a \equiv b(\bmod m)$ if $m \mid a-b$.
- Each number modulo m has a representative in $\{0,1, \ldots, m-1\}$.
- Injections, surjections, bijections...
- a has a multiplicative inverse modulo m if and only if $\operatorname{gcd}(a, m)=1$.

