
Listing Bit Strings

List all bit strings of length 3.

000, 001, 010, 011, 100, 101, 110, 111.

Now do it while only flipping one bit at a time!

Today: Finish graphs and talk about numbers.



Forests

A forest is an acyclic graph.

Each connected component of a forest is a tree.

How many connected components in this graph? 6.



Complete Graphs

The complete graph Kn has n vertices and all possible edges.

A bipartite graph has left nodes L and right nodes R.
I The vertex set is V = L∪R.
I Left nodes are only allowed to connect to right nodes; right

nodes are only allowed to connect to left nodes.
The complete bipartite graph Km,n has m left nodes, n right
nodes, and all possible edges.



Edge Sparsity

How many edges does Kn have?
I Handshaking Lemma: ∑v∈V degv = 2|E |.
I ∑v∈V degv = n(n−1).
I So |E |= n(n−1)/2.

Asymptotic notation from CS 61A/B: |E |= Θ(n2).

For a tree on n vertices, |E |= n−1 = Θ(n).

The complete graph is called dense; trees are called sparse.



Planar Graphs Are Sparse

Theorem: For a connected planar graph with |V | ≥ 3, we have
e ≤ 3v −6.

Proof.
I Each edge has two “sides”. So, if we add up all of the

sides, we get 2e.
I Each face has at least three sides. So the total number of

sides is at least 3f .
I Thus, 2e ≥ 3f .
I Euler’s Formula: v + f = e + 2.
I Rearrange: e ≤ 3v −6.

If the graph has n vertices, then |E |= Θ(n). Like trees.

Planar graphs are sparse.



K5 Is Not Planar

How many edges does K5 have? 10.
I e = 10.
I 3v −6 = 9.

This violates e ≤ 3v −6 for planar graphs.

K5 is not planar.



K3,3 Is Not Planar

Consider K3,3. Edges? 9. Vertices? 6. So 3v −6 = 12.

The previous proof fails. Make it stronger!
I The total number of sides is 2e.
I Each face has at least three sides. Actually, at least four!
I In a bipartite graph, cycles are of even length.
I So, 2e ≥ 4f and v + f = e + 2, so rearranging gives

e ≤ 2v −4 for bipartite planar graphs.
Conclusion: K3,3 is not planar.



Why K5 and K3,3?

Why did we show that K5 and K3,3 are non-planar?

Kuratowski’s Theorem: A graph is non-planar if and only if it
“contains” K5 or K3,3.

I The word “contains” is tricky. . . do not worry about the
details. Not important for the course.

I Content of theorem: essentially K5 and K3,3 are the only
obstructions to non-planarity.



Graph Coloring

A (vertex) coloring of a graph G is an assignment of colors to
vertices so that no two colors are joined by an edge.

Why do we care about graph coloring?
I Edges are used to encode constraints.
I Graph colorings can be used for scheduling, etc.



Coloring with Maximum Degree +1

Theorem. Let dmax be the maximum degree of any vertex in G.
Then G can be colored with dmax + 1 colors.

Proof.
I Use induction on |V |.
I For |V | ≥ 2, remove a vertex v .
I Inductively color the resulting graph with dmax + 1 colors.
I Add v back in.
I Since v has at most dmax neighbors which use at most

dmax colors, use an unused color to color v .
For some types of graphs, this bound is very bad.



Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite ⇐⇒ G can be 2-colored.

Proof.
I If G is bipartite with V = L∪R, color vertices in L blue and

vertices in R red.
I Conversely, suppose G is 2-colorable.
I In the 2-coloring of G, the red vertices have no edges

between them, and similarly for blue vertices.
I So the graph is bipartite.

Consider Kn,n. Then dmax + 1 = n + 1, but it can be 2-colored.



Graph Coloring & Planarity

Consider a colored map and its planar dual:

(Ignore the infinite face.)

Coloring a map so no adjacent regions have the same color is
equivalent to coloring a planar graph.



Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

I The proof required a human to narrow down the cases,
and a computer to exhaustively check the remaining cases.

I The proof has not yet been simplified to the point where a
human can easily read over it.

I Note: K5 requires 5 colors.



Hypercubes

The hypercube of dimension d , Qd , where d is a positive
integer, has:

I vertices which are labeled by length-d bit strings, and
I an edge between two vertices if and only if they differ in

exactly one bit.
Here is a picture of Q3.

000000 001001

010010 011011

100100 101101

110110 111111



Hypercube Facts

000000 001001

010010 011011

100100 101101

110110 111111

The 0-face is the part of the hypercube whose vertices begin
with 0. Similarly for the 1-face.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices? 2d .
Number of edges? ∑v∈V degv = d2d , so |E |= d2d−1.

So for a hypercube with n vertices, |E |= Θ(n logn).



Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.
I Color all vertices with an even number of 0s blue and an

odd number of 0s orange.
I Since each edge flips a bit, edges only connect vertices of

different parity.
Inductive Proof.

I Check the base case.
I Inductively color the 0-face.
I If 0x is a vertex colored blue, color the vertex 1x orange

and if 0x is orange, color 1x blue.



Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A Hamiltonian cycle is a cycle that includes every vertex
exactly once.

Listing the bit strings while flipping one bit at a time is exactly a
Hamiltonian cycle on the hypercube.

Inductive construction:
I Length 1: 0, 1.
I Length 2: Length-1 sequence with 0s prepended. 00, 01.

Length-1 sequence backwards with 1s prepended. 11, 10.
Put it together: 00, 01, 11, 10.

I Length 3: 000, 001, 011, 010, 110, 111, 101, 100.
Hypercubes have Hamiltonian cycles.



Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.

In the clock mathematics, the numbers wrap around: 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, . . .

We will do the same thing for bases other than 12.
Also, we will typically use the representatives {0,1, . . . ,11}
rather than {1, . . . ,12}.

Question to ponder: What time will it be in 21000000 hours from
now? Can this even be computed?



Modular Equivalence

Let m be a positive integer.
For the next few lectures, m will be called the modulus.

Say that x ≡ y (mod m) if m | x−y .
Read this as “x is equivalent to y , modulo m.”

Examples: What numbers are equivalent to 0, modulo 6?
I . . . ,−18,−12,−6,0,6,12,18, . . . .

In the “modulo 6” system, think of these numbers as the same.



Modular Equivalence: Addition, Multiplication

Theorem: If a,b,c,d ∈ Z with

a≡ c (mod m) and b ≡ d (mod m),

then a + b ≡ c + d (mod m) and ab ≡ cd (mod m).

Addition and multiplication work as usual in modular arithmetic.

Proof.
I By definition, m | a−c and m | b−d .
I So, m | a + b− (c + d).
I Also a = km + c and b = `m + d for some k , ` ∈ Z.
I So, ab = k`m2 + dkm + c`m + cd .
I Hence m | ab−cd .



Representatives

Theorem: Each integer x is equivalent to a unique member of
{0,1, . . . ,m−1} modulo m.

Proof.
I By Division Algorithm, x = qm + r for some q ∈ Z and

r ∈ {0,1, . . . ,m−1}.
I Thus m | x− r , i.e., x ≡ r (mod m).
I If x ≡ r1 (mod m) and x ≡ r2 (mod m), then (by

subtracting) r1− r2 ≡ 0 (mod m).
I But this is impossible if r1, r2 ∈ {0,1, . . . ,m−1} are distinct.

Now we can think of the numbers {0,1, . . . ,m−1} with addition
and multiplication (modulo m) as a number system.

This system is usually called Z/mZ.



Multiplication in Modular Arithmetic
Modulo 6:
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Left: Going from left to right is multiplication by 3.

Right: Going from left to right is multiplication by 5.



Bijections

A function f : A→ B is:
I injective (or one-to-one) if for x1 6= x2, f (x1) 6= f (x2)

(different inputs mapped to different outputs);
I surjective (or onto) if for every y ∈ B, there is an x ∈ A

with f (x) = y (every element of B is hit);
I bijective if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Consider the map “multiplication by a, modulo m”. That is,
f (x) := ax mod m.

When is this map bijective?



Greatest Common Divisor

For two integers a,b ∈ Z, the greatest common divisor (GCD)
of a and b is the largest number that divides both a and b.

Fact: Any common divisor of a and b also divides gcd(a,b).

(Proof: Next time!)



Existence of Multiplicative Inverses

Theorem: f (x) = ax mod m is bijective if and only if
gcd(a,m) = 1.

For a ∈ Z/mZ, a multiplicative inverse x is an element of
Z/mZ for which ax ≡ 1 (mod m).

Corollary: For all a ∈ Z/mZ, a has a multiplicative inverse
(necessarily unique) if and only if gcd(a,m) = 1.

(Proof: Next time!)



Summary

Graphs.
I Consequences of Euler’s Formula: non-planarity of K5 and

K3,3; planar graphs are sparse.
I Types of graphs: forests, hypercubes.
I Graph colorings: ≤ dmax + 1 for general graphs, 2 for

bipartite graphs.
I Hypercubes have Hamiltonian cycles.

Modular arithmetic.
I a≡ b (mod m) if m | a−b.
I Each number modulo m has a representative in
{0,1, . . . ,m−1}.

I Injections, surjections, bijections. . .
I a has a multiplicative inverse modulo m if and only if

gcd(a,m) = 1.


