Listing Bit Strings

List all bit strings of length 3.

000, 001, 010, 011, 100, 101, 110, 111.

Now do it while only flipping one bit at a time!

Today: Finish graphs and talk about numbers.

Edge Sparsity

How many edges does K_n have?

- ▶ Handshaking Lemma: $\sum_{v \in V} \deg v = 2|E|$.
- $ightharpoonup \sum_{v \in V} \deg v = n(n-1).$
- ► So |E| = n(n-1)/2.

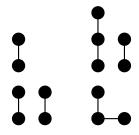
Asymptotic notation from CS 61A/B: $|E| = \Theta(n^2)$.

For a tree on *n* vertices, $|E| = n - 1 = \Theta(n)$.

The complete graph is called *dense*; trees are called *sparse*.

Forests

A forest is an acyclic graph.



Each connected component of a forest is a tree.

How many connected components in this graph? 6.

Planar Graphs Are Sparse

Theorem: For a connected planar graph with $|V| \ge 3$, we have $e \le 3\nu - 6$.

Proof.

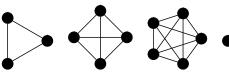
- ► Each edge has two "sides". So, if we add up all of the sides, we get 2e.
- ► Each face has at least three sides. So the total number of sides is at least 3*f*.
- ► Thus, 2*e* > 3*f*.
- ▶ Euler's Formula: v + f = e + 2.
- ▶ Rearrange: e < 3v 6.

If the graph has *n* vertices, then $|E| = \Theta(n)$. Like trees.

Planar graphs are sparse.

Complete Graphs

The **complete graph** K_n has n vertices and all possible edges.



A bipartite graph has left nodes L and right nodes R.

- ▶ The vertex set is $V = L \cup R$.
- ► Left nodes are only allowed to connect to right nodes; right nodes are only allowed to connect to left nodes.

The **complete bipartite graph** $K_{m,n}$ has m left nodes, n right nodes, and all possible edges.

K₅ Is Not Planar

How many edges does K_5 have? 10.

- e = 10.
- ► 3v 6 = 9.

This violates $e \le 3v - 6$ for planar graphs.

 K_5 is not planar.

K_{3.3} Is Not Planar

Consider $K_{3,3}$. Edges? 9. Vertices? 6. So 3v - 6 = 12.

The previous proof fails. Make it stronger!

- ▶ The total number of sides is 2e.
- ► Each face has at least three sides. Actually, at least four!
- ▶ In a bipartite graph, cycles are of even length.
- So, $2e \ge 4f$ and v + f = e + 2, so rearranging gives $e \le 2v 4$ for bipartite planar graphs.

Conclusion: $K_{3,3}$ is not planar.

Coloring with Maximum Degree +1

Theorem. Let d_{\max} be the maximum degree of any vertex in G. Then G can be colored with $d_{\max}+1$ colors.

Proof.

- ▶ Use induction on |*V*|.
- ▶ For $|V| \ge 2$, remove a vertex v.
- ▶ Inductively color the resulting graph with $d_{max} + 1$ colors.
- ▶ Add v back in.
- Since v has at most d_{max} neighbors which use at most d_{max} colors, use an unused color to color v. □

For some types of graphs, this bound is very bad.

Why K_5 and $K_{3,3}$?

Why did we show that K_5 and $K_{3,3}$ are non-planar?

Kuratowski's Theorem: A graph is non-planar if and only if it "contains" K_5 or $K_{3,3}$.

- ► The word "contains" is tricky...do not worry about the details. Not important for the course.
- ► Content of theorem: essentially K₅ and K_{3,3} are the only obstructions to non-planarity.

Bipartite Graphs Are 2-Colorable

Theorem: G is bipartite \iff G can be 2-colored.

Proof.

- ▶ If G is bipartite with $V = L \cup R$, color vertices in L blue and vertices in R red.
- ► Conversely, suppose *G* is 2-colorable.
- ▶ In the 2-coloring of *G*, the red vertices have no edges between them, and similarly for blue vertices.
- ▶ So the graph is bipartite.

Consider $K_{n,n}$. Then $d_{\text{max}} + 1 = n + 1$, but it can be 2-colored.

Graph Coloring

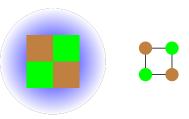
A (vertex) coloring of a graph G is an assignment of colors to vertices so that no two colors are joined by an edge.

Why do we care about graph coloring?

- ► Edges are used to encode *constraints*.
- ▶ Graph colorings can be used for scheduling, etc.

Graph Coloring & Planarity

Consider a colored map and its planar dual:



(Ignore the infinite face.)

Coloring a map so no adjacent regions have the same color is equivalent to coloring a planar graph.

Four Color Theorem

Four Color Theorem: Every planar graph can be 4-colored.

- The proof required a human to narrow down the cases, and a computer to exhaustively check the remaining cases.
- ► The proof has not yet been simplified to the point where a human can easily read over it.
- ▶ Note: K₅ requires 5 colors.

Hypercubes Are Bipartite

Theorem: Hypercubes are 2-colorable.

Proof.

- Color all vertices with an even number of 0s blue and an odd number of 0s orange.
- ► Since each edge flips a bit, edges only connect vertices of different parity.

Inductive Proof.

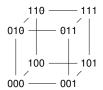
- ► Check the base case.
- ► Inductively color the 0-face.
- ► If 0x is a vertex colored blue, color the vertex 1x orange and if 0x is orange, color 1x blue. □

Hypercubes

The **hypercube** of dimension d, Q_d , where d is a positive integer, has:

- ▶ vertices which are labeled by length-d bit strings, and
- an edge between two vertices if and only if they differ in exactly one bit.

Here is a picture of Q_3 .



Hamiltonian Paths

Recall: List all bit strings of length 3, flipping one bit at a time.

A $\mbox{{\bf Hamiltonian cycle}}$ is a cycle that includes every vertex exactly once.

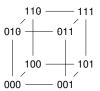
Listing the bit strings while flipping one bit at a time is exactly a Hamiltonian cycle on the hypercube.

Inductive construction:

- ► Length 1: 0, 1.
- ► Length 2: Length-1 sequence with 0s prepended. 00, 01. Length-1 sequence *backwards* with 1s prepended. 11, 10. Put it together: 00, 01, 11, 10.
- ► Length 3: 000, 001, 011, 010, 110, 111, 101, 100.

Hypercubes have Hamiltonian cycles.

Hypercube Facts



The **0-face** is the part of the hypercube whose vertices begin with **0**. Similarly for the **1-face**.

The 0-face is a lower-dimensional hypercube. Induction!

Number of vertices? 2^d .

Number of edges? $\sum_{v \in V} \deg v = d2^d$, so $|E| = d2^{d-1}$.

So for a hypercube with *n* vertices, $|E| = \Theta(n \log n)$.

Clock Mathematics

If it is 2:00 right now, what time is it in 24 hours? Still 2:00.

In the clock mathematics, the numbers *wrap around*: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, ...

We will do the same thing for bases other than 12.

Also, we will typically use the representatives $\{0,1,\ldots,11\}$ rather than $\{1,\ldots,12\}$.

Question to ponder: What time will it be in 2¹⁰⁰⁰⁰⁰⁰ hours from now? Can this even be computed?

Modular Equivalence

Let *m* be a positive integer.

For the next few lectures, *m* will be called the **modulus**.

Say that $x \equiv y \pmod{m}$ if $m \mid x - y$. Read this as "x is equivalent to y, modulo m."

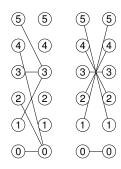
Examples: What numbers are equivalent to 0, modulo 6?

▶ ..., −18, −12, −6, 0, 6, 12, 18,

In the "modulo 6" system, think of these numbers as the same.

Multiplication in Modular Arithmetic

Modulo 6:



Left: Going from left to right is multiplication by 3.

Right: Going from left to right is multiplication by 5.

Modular Equivalence: Addition, Multiplication

Theorem: If $a, b, c, d \in \mathbb{Z}$ with

$$a \equiv c \pmod{m}$$
 and $b \equiv d \pmod{m}$,

then $a+b \equiv c+d \pmod{m}$ and $ab \equiv cd \pmod{m}$.

Addition and multiplication work as usual in modular arithmetic.

Proof.

- ▶ By definition, $m \mid a c$ and $m \mid b d$.
- ► So, $m \mid a+b-(c+d)$.
- ▶ Also a = km + c and $b = \ell m + d$ for some $k, \ell \in \mathbb{Z}$.
- ▶ So, $ab = k\ell m^2 + dkm + c\ell m + cd$.
- ▶ Hence $m \mid ab cd$.

Bijections

A function $f: A \rightarrow B$ is:

- ▶ injective (or one-to-one) if for $x_1 \neq x_2$, $f(x_1) \neq f(x_2)$ (different inputs mapped to different outputs);
- ▶ surjective (or onto) if for every $y \in B$, there is an $x \in A$ with f(x) = y (every element of B is hit);
- **bijective** if it is both injective and surjective.

A bijection is like relabeling the elements of A.

Consider the map "multiplication by a, modulo m". That is, $f(x) := ax \mod m$.

When is this map bijective?

Representatives

Theorem: Each integer x is equivalent to a unique member of $\{0,1,\ldots,m-1\}$ modulo m.

Proof.

- ▶ By Division Algorithm, x = qm + r for some $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., m 1\}$.
- ▶ Thus $m \mid x r$, i.e., $x \equiv r \pmod{m}$.
- ▶ If $x \equiv r_1 \pmod{m}$ and $x \equiv r_2 \pmod{m}$, then (by subtracting) $r_1 r_2 \equiv 0 \pmod{m}$.
- ▶ But this is impossible if $r_1, r_2 \in \{0, 1, ..., m-1\}$ are distinct.

 □

Now we can think of the numbers $\{0,1,\ldots,m-1\}$ with addition and multiplication (modulo m) as a number system.

This system is usually called $\mathbb{Z}/m\mathbb{Z}$.

Greatest Common Divisor

For two integers $a, b \in \mathbb{Z}$, the **greatest common divisor (GCD)** of a and b is the largest number that divides both a and b.

Fact: Any common divisor of a and b also divides gcd(a,b).

(Proof: Next time!)

Existence of Multiplicative Inverses

Theorem: $f(x) = ax \mod m$ is bijective if and only if gcd(a, m) = 1.

For $a \in \mathbb{Z}/m\mathbb{Z}$, a **multiplicative inverse** x is an element of $\mathbb{Z}/m\mathbb{Z}$ for which $ax \equiv 1 \pmod{m}$.

Corollary: For all $a \in \mathbb{Z}/m\mathbb{Z}$, a has a multiplicative inverse (necessarily unique) if and only if $\gcd(a,m)=1$.

(Proof: Next time!)

Summary

Graphs.

- ► Consequences of Euler's Formula: non-planarity of K₅ and K_{3.3}; planar graphs are sparse.
- ► Types of graphs: forests, hypercubes.
- ▶ Graph colorings: $\leq d_{\text{max}} + 1$ for general graphs, 2 for bipartite graphs.
- ► Hypercubes have Hamiltonian cycles.

Modular arithmetic.

- $ightharpoonup a \equiv b \pmod{m}$ if $m \mid a b$.
- ► Each number modulo m has a representative in $\{0,1,\ldots,m-1\}$.
- ► Injections, surjections, bijections...
- a has a multiplicative inverse modulo m if and only if gcd(a, m) = 1.