
A Graph Puzzle

Can you draw this graph so that no edges cross?

Think of the top nodes as “houses” and the bottom nodes as
“utilities” (electricity, water, gas).

Can we have non-overlapping pipes?

Today: We study special graphs (trees and planar graphs).
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I Connected and the removal of any edge disconnects it.
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Removing a Leaf

A leaf is a vertex of degree one.

Lemma: After removing a leaf from a connected graph, the
graph remains connected.

Proof.
I Let x be the leaf.
I For any vertices u,v ∈ T which are not x , there is a path

from u to v (T is connected). This path does not use x .
I After removing x , the path still exists, so the graph is still

connected.

We need to remove leaves to do induction.
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Equivalence of Tree Definitions

T is connected and acyclic ⇐⇒ T is connected and has
|V |−1 edges.

Proof ( =⇒ ).
I Use induction on |V |. The base case is easy.
I Consider a tree with |V | ≥ 2.
I Take a path until you get stuck. Since there are no cycles,

you must get stuck at a leaf. Remove the leaf.
I Resulting tree has |V |−1 vertices and |V |−2 edges (by

induction). So our tree had |V |−1 edges.
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cannot be in cycles).
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from x to y .

Proof.
I There exists a path: trees are connected.
I If there are two different paths from x to y , then take the

first path from x to y and the second path back to x .
I This yields a cycle.
I Trees have no cycles, so the path is unique.
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Equivalence of Tree Definitions

T is connected and acyclic ⇐⇒ T is connected and the
removal of any edge disconnects T .

Proof ( =⇒ ).
I Consider removing {x ,y} ∈ E .
I The edge {x ,y} must be the unique path from x to y in T .
I So removing {x ,y} disconnects x and y .

Proof (⇐= ).
I Remove the edge {x ,y}.
I Now T is disconnected, so {x ,y} could not have been part

of a cycle.
I T has no cycles.
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I For x ,y ∈ T , if {x ,y} ∈ E , then x and y are connected.
I Otherwise, adding {x ,y} creates a cycle, so there must

have already been a path from x to y .
I Thus T is connected.
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Planar Graphs

A planar graph is a graph which can be drawn in the plane
with no edge crossings.

Theorem: Trees are planar.

Proof.
I Use induction on the number of vertices.
I For a tree with one vertex, this is easy.
I Consider a tree with |V | ≥ 2 vertices.
I Remove a leaf u (connected to v ). The resulting tree has

fewer vertices, so it can be drawn without edge crossings.
I Zoom in on v . Since v has finitely many attached edges,

there must be room to draw {u,v} without crossings.
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I Each edge in G corresponds to an edge in G∗.
I Technically, we should say a dual, instead of the

dual—there may be multiple planar duals for G.
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Proof of the Dual of the Dual

Proof.

I Look at a vertex.

In G∗, the lines going through the edges incident to the
vertex define a face.

I The face encloses the vertex.
I Thus, the vertices of G correspond to the faces of G∗.
I We already know that the edges of G and G∗ correspond

to each other.
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The previous argument is a special case of cycle-cut duality.
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I The dual edges to the cycle form a cut.
I Since G is a dual of G∗, then a simple cut in G
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Cuts & Connectedness

Consider a set of edges with no cuts.

The remaining edges
must form a connected graph.

I Equivalently: If the remaining edges do not connect their
vertices, then there must be a cut separating the vertices.

If a set of edges connects their vertices, then the remaining
edges must not have any cuts for these vertices.
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Spanning Trees to Euler’s Formula

Every spanning tree T in G has a dual spanning tree T ′ in G∗

whose edges are edges in G∗ which are not dual to T .

Let eT be the number of edges in T and eT ′ be the number of
edges in T ′.

So, e = eT +eT ′ .
I eT = v −1.
I eT ′ = f −1.

So v + f = e+2. Euler’s Formula!!!

This is called the method of “interdigitating spanning trees”.



Spanning Trees to Euler’s Formula

Every spanning tree T in G has a dual spanning tree T ′ in G∗

whose edges are edges in G∗ which are not dual to T .

Let eT be the number of edges in T and eT ′ be the number of
edges in T ′.

So, e = eT +eT ′ .
I eT = v −1.
I eT ′ = f −1.

So v + f = e+2. Euler’s Formula!!!

This is called the method of “interdigitating spanning trees”.



Spanning Trees to Euler’s Formula

Every spanning tree T in G has a dual spanning tree T ′ in G∗

whose edges are edges in G∗ which are not dual to T .

Let eT be the number of edges in T and eT ′ be the number of
edges in T ′.

So, e = eT +eT ′ .

I eT = v −1.
I eT ′ = f −1.

So v + f = e+2. Euler’s Formula!!!

This is called the method of “interdigitating spanning trees”.



Spanning Trees to Euler’s Formula

Every spanning tree T in G has a dual spanning tree T ′ in G∗

whose edges are edges in G∗ which are not dual to T .

Let eT be the number of edges in T and eT ′ be the number of
edges in T ′.

So, e = eT +eT ′ .
I eT = v −1.

I eT ′ = f −1.
So v + f = e+2. Euler’s Formula!!!

This is called the method of “interdigitating spanning trees”.



Spanning Trees to Euler’s Formula

Every spanning tree T in G has a dual spanning tree T ′ in G∗

whose edges are edges in G∗ which are not dual to T .

Let eT be the number of edges in T and eT ′ be the number of
edges in T ′.

So, e = eT +eT ′ .
I eT = v −1.
I eT ′ = f −1.

So v + f = e+2. Euler’s Formula!!!

This is called the method of “interdigitating spanning trees”.



Spanning Trees to Euler’s Formula

Every spanning tree T in G has a dual spanning tree T ′ in G∗

whose edges are edges in G∗ which are not dual to T .

Let eT be the number of edges in T and eT ′ be the number of
edges in T ′.

So, e = eT +eT ′ .
I eT = v −1.
I eT ′ = f −1.

So v + f = e+2.

Euler’s Formula!!!

This is called the method of “interdigitating spanning trees”.



Spanning Trees to Euler’s Formula

Every spanning tree T in G has a dual spanning tree T ′ in G∗

whose edges are edges in G∗ which are not dual to T .

Let eT be the number of edges in T and eT ′ be the number of
edges in T ′.

So, e = eT +eT ′ .
I eT = v −1.
I eT ′ = f −1.

So v + f = e+2. Euler’s Formula!!!

This is called the method of “interdigitating spanning trees”.



Spanning Trees to Euler’s Formula

Every spanning tree T in G has a dual spanning tree T ′ in G∗

whose edges are edges in G∗ which are not dual to T .

Let eT be the number of edges in T and eT ′ be the number of
edges in T ′.

So, e = eT +eT ′ .
I eT = v −1.
I eT ′ = f −1.

So v + f = e+2. Euler’s Formula!!!

This is called the method of “interdigitating spanning trees”.



Summary

I Trees are minimally connected graphs (many equivalent
definitions).

I We can perform induction on trees by removing a leaf.
I Planar graphs can be drawn without edge crossings.
I Trees are planar graphs.
I Each planar graph G has a dual planar graph G∗ where the

faces of G become the vertices of G∗.
I A cycle in G is a cut in G∗ and vice versa.
I Each spanning tree in G has a dual spanning tree in G∗.
I This proves Euler’s Formula: v + f = e+2.


