
A Deeper Look at Induction

Induction and recursion are key ideas in computer science.

I think it is worth taking a deeper look at the role of induction in
mathematics.

The material today will be more abstract, but stick with me.

Today: Finish up induction and start graph theory.



A Deeper Look at Induction

Induction and recursion are key ideas in computer science.

I think it is worth taking a deeper look at the role of induction in
mathematics.

The material today will be more abstract, but stick with me.

Today: Finish up induction and start graph theory.



A Deeper Look at Induction

Induction and recursion are key ideas in computer science.

I think it is worth taking a deeper look at the role of induction in
mathematics.

The material today will be more abstract, but stick with me.

Today: Finish up induction and start graph theory.



When Does Induction Work?

We know that induction can be used to prove ∀n ∈ N P(n).

Can it be used to prove ∀x ∈ R P(x)? How about ∀x ∈Q P(x)?

How might a proof by induction over the reals look like?
I In the inductive step, we need a method of going from one

real number to the “next” real number.
I P(x) =⇒ P(x +1) certainly does not hit all of R. Neither

does P(x) =⇒ P(x + ε) regardless of what ε is.
I Any way of getting to the “next” real number must not

coincide with our usual notion of an ordering on R.



When Does Induction Work?

We know that induction can be used to prove ∀n ∈ N P(n).

Can it be used to prove ∀x ∈ R P(x)?

How about ∀x ∈Q P(x)?

How might a proof by induction over the reals look like?
I In the inductive step, we need a method of going from one

real number to the “next” real number.
I P(x) =⇒ P(x +1) certainly does not hit all of R. Neither

does P(x) =⇒ P(x + ε) regardless of what ε is.
I Any way of getting to the “next” real number must not

coincide with our usual notion of an ordering on R.



When Does Induction Work?

We know that induction can be used to prove ∀n ∈ N P(n).

Can it be used to prove ∀x ∈ R P(x)? How about ∀x ∈Q P(x)?

How might a proof by induction over the reals look like?
I In the inductive step, we need a method of going from one

real number to the “next” real number.
I P(x) =⇒ P(x +1) certainly does not hit all of R. Neither

does P(x) =⇒ P(x + ε) regardless of what ε is.
I Any way of getting to the “next” real number must not

coincide with our usual notion of an ordering on R.



When Does Induction Work?

We know that induction can be used to prove ∀n ∈ N P(n).

Can it be used to prove ∀x ∈ R P(x)? How about ∀x ∈Q P(x)?

How might a proof by induction over the reals look like?

I In the inductive step, we need a method of going from one
real number to the “next” real number.

I P(x) =⇒ P(x +1) certainly does not hit all of R. Neither
does P(x) =⇒ P(x + ε) regardless of what ε is.

I Any way of getting to the “next” real number must not
coincide with our usual notion of an ordering on R.



When Does Induction Work?

We know that induction can be used to prove ∀n ∈ N P(n).

Can it be used to prove ∀x ∈ R P(x)? How about ∀x ∈Q P(x)?

How might a proof by induction over the reals look like?
I In the inductive step, we need a method of going from one

real number to the “next” real number.

I P(x) =⇒ P(x +1) certainly does not hit all of R. Neither
does P(x) =⇒ P(x + ε) regardless of what ε is.

I Any way of getting to the “next” real number must not
coincide with our usual notion of an ordering on R.



When Does Induction Work?

We know that induction can be used to prove ∀n ∈ N P(n).

Can it be used to prove ∀x ∈ R P(x)? How about ∀x ∈Q P(x)?

How might a proof by induction over the reals look like?
I In the inductive step, we need a method of going from one

real number to the “next” real number.
I P(x) =⇒ P(x +1) certainly does not hit all of R.

Neither
does P(x) =⇒ P(x + ε) regardless of what ε is.

I Any way of getting to the “next” real number must not
coincide with our usual notion of an ordering on R.



When Does Induction Work?

We know that induction can be used to prove ∀n ∈ N P(n).

Can it be used to prove ∀x ∈ R P(x)? How about ∀x ∈Q P(x)?

How might a proof by induction over the reals look like?
I In the inductive step, we need a method of going from one

real number to the “next” real number.
I P(x) =⇒ P(x +1) certainly does not hit all of R. Neither

does P(x) =⇒ P(x + ε) regardless of what ε is.

I Any way of getting to the “next” real number must not
coincide with our usual notion of an ordering on R.



When Does Induction Work?

We know that induction can be used to prove ∀n ∈ N P(n).

Can it be used to prove ∀x ∈ R P(x)? How about ∀x ∈Q P(x)?

How might a proof by induction over the reals look like?
I In the inductive step, we need a method of going from one

real number to the “next” real number.
I P(x) =⇒ P(x +1) certainly does not hit all of R. Neither

does P(x) =⇒ P(x + ε) regardless of what ε is.
I Any way of getting to the “next” real number must not

coincide with our usual notion of an ordering on R.



Well Orderings

Given a set S, a total ordering ≤ on S is a relation which
satisfies, for all x ,y ,z ∈ S:

I (Totality) We either have x ≤ y or y ≤ x .
I (Reflexivity) We have x ≤ x .
I (Transitivity) If x ≤ y and y ≤ z, then x ≤ z.
I (Antisymmetry) If x ≤ y and y ≤ x , then x = y .

Given a set S, a well ordering1 ≤ on S is a total ordering that
also satisfies the following property:

Well Ordering Property: For any non-empty subset
R ⊆ S, R has a least element, that is, an element x
such that x ≤ y for all y ∈ R.

1Excuse the grammar, but this is the accepted terminology in
mathematics.



Well Orderings

Given a set S, a total ordering ≤ on S is a relation which
satisfies, for all x ,y ,z ∈ S:

I (Totality) We either have x ≤ y or y ≤ x .

I (Reflexivity) We have x ≤ x .
I (Transitivity) If x ≤ y and y ≤ z, then x ≤ z.
I (Antisymmetry) If x ≤ y and y ≤ x , then x = y .

Given a set S, a well ordering1 ≤ on S is a total ordering that
also satisfies the following property:

Well Ordering Property: For any non-empty subset
R ⊆ S, R has a least element, that is, an element x
such that x ≤ y for all y ∈ R.

1Excuse the grammar, but this is the accepted terminology in
mathematics.



Well Orderings

Given a set S, a total ordering ≤ on S is a relation which
satisfies, for all x ,y ,z ∈ S:

I (Totality) We either have x ≤ y or y ≤ x .
I (Reflexivity) We have x ≤ x .

I (Transitivity) If x ≤ y and y ≤ z, then x ≤ z.
I (Antisymmetry) If x ≤ y and y ≤ x , then x = y .

Given a set S, a well ordering1 ≤ on S is a total ordering that
also satisfies the following property:

Well Ordering Property: For any non-empty subset
R ⊆ S, R has a least element, that is, an element x
such that x ≤ y for all y ∈ R.

1Excuse the grammar, but this is the accepted terminology in
mathematics.



Well Orderings

Given a set S, a total ordering ≤ on S is a relation which
satisfies, for all x ,y ,z ∈ S:

I (Totality) We either have x ≤ y or y ≤ x .
I (Reflexivity) We have x ≤ x .
I (Transitivity) If x ≤ y and y ≤ z, then x ≤ z.

I (Antisymmetry) If x ≤ y and y ≤ x , then x = y .

Given a set S, a well ordering1 ≤ on S is a total ordering that
also satisfies the following property:

Well Ordering Property: For any non-empty subset
R ⊆ S, R has a least element, that is, an element x
such that x ≤ y for all y ∈ R.

1Excuse the grammar, but this is the accepted terminology in
mathematics.



Well Orderings

Given a set S, a total ordering ≤ on S is a relation which
satisfies, for all x ,y ,z ∈ S:

I (Totality) We either have x ≤ y or y ≤ x .
I (Reflexivity) We have x ≤ x .
I (Transitivity) If x ≤ y and y ≤ z, then x ≤ z.
I (Antisymmetry) If x ≤ y and y ≤ x , then x = y .

Given a set S, a well ordering1 ≤ on S is a total ordering that
also satisfies the following property:

Well Ordering Property: For any non-empty subset
R ⊆ S, R has a least element, that is, an element x
such that x ≤ y for all y ∈ R.

1Excuse the grammar, but this is the accepted terminology in
mathematics.



Well Orderings

Given a set S, a total ordering ≤ on S is a relation which
satisfies, for all x ,y ,z ∈ S:

I (Totality) We either have x ≤ y or y ≤ x .
I (Reflexivity) We have x ≤ x .
I (Transitivity) If x ≤ y and y ≤ z, then x ≤ z.
I (Antisymmetry) If x ≤ y and y ≤ x , then x = y .

Given a set S, a well ordering1 ≤ on S is a total ordering that
also satisfies the following property:

Well Ordering Property: For any non-empty subset
R ⊆ S, R has a least element, that is, an element x
such that x ≤ y for all y ∈ R.

1Excuse the grammar, but this is the accepted terminology in
mathematics.



Examples of Orderings

1. The usual orderings ≤ on N, Z, Q, R are total orderings.

2. The ordering ≤ on Z is NOT a well-ordering. For example,
Z itself does not have a least element.

3. Any total ordering on a finite set is a well ordering, e.g.
S = {x1,x2,x3} with x1 ≤ x2 ≤ x3.

Subsets of S Least Element
∅ none
{x1} x1
{x2} x2
{x3} x3
{x1,x2} x1
{x1,x3} x1
{x2,x3} x2
{x1,x2,x3} x1



Examples of Orderings

1. The usual orderings ≤ on N, Z, Q, R are total orderings.
2. The ordering ≤ on Z is NOT a well-ordering.

For example,
Z itself does not have a least element.

3. Any total ordering on a finite set is a well ordering, e.g.
S = {x1,x2,x3} with x1 ≤ x2 ≤ x3.

Subsets of S Least Element
∅ none
{x1} x1
{x2} x2
{x3} x3
{x1,x2} x1
{x1,x3} x1
{x2,x3} x2
{x1,x2,x3} x1



Examples of Orderings

1. The usual orderings ≤ on N, Z, Q, R are total orderings.
2. The ordering ≤ on Z is NOT a well-ordering. For example,

Z itself does not have a least element.

3. Any total ordering on a finite set is a well ordering, e.g.
S = {x1,x2,x3} with x1 ≤ x2 ≤ x3.

Subsets of S Least Element
∅ none
{x1} x1
{x2} x2
{x3} x3
{x1,x2} x1
{x1,x3} x1
{x2,x3} x2
{x1,x2,x3} x1



Examples of Orderings

1. The usual orderings ≤ on N, Z, Q, R are total orderings.
2. The ordering ≤ on Z is NOT a well-ordering. For example,

Z itself does not have a least element.
3. Any total ordering on a finite set is a well ordering, e.g.

S = {x1,x2,x3} with x1 ≤ x2 ≤ x3.

Subsets of S Least Element
∅ none
{x1} x1
{x2} x2
{x3} x3
{x1,x2} x1
{x1,x3} x1
{x2,x3} x2
{x1,x2,x3} x1



Examples of Orderings

1. The usual orderings ≤ on N, Z, Q, R are total orderings.
2. The ordering ≤ on Z is NOT a well-ordering. For example,

Z itself does not have a least element.
3. Any total ordering on a finite set is a well ordering, e.g.

S = {x1,x2,x3} with x1 ≤ x2 ≤ x3.

Subsets of S Least Element
∅ none
{x1} x1
{x2} x2
{x3} x3
{x1,x2} x1
{x1,x3} x1
{x2,x3} x2
{x1,x2,x3} x1



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction! On what?
I Induction on the size of R does not work. This can prove

that all finite subsets of N have a least element. . .
I but it does not work for the infinite subsets (like the set of

even natural numbers).
I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction! On what?
I Induction on the size of R does not work. This can prove

that all finite subsets of N have a least element. . .
I but it does not work for the infinite subsets (like the set of

even natural numbers).
I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.

I Induction! On what?
I Induction on the size of R does not work. This can prove

that all finite subsets of N have a least element. . .
I but it does not work for the infinite subsets (like the set of

even natural numbers).
I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction!

On what?
I Induction on the size of R does not work. This can prove

that all finite subsets of N have a least element. . .
I but it does not work for the infinite subsets (like the set of

even natural numbers).
I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction! On what?

I Induction on the size of R does not work. This can prove
that all finite subsets of N have a least element. . .

I but it does not work for the infinite subsets (like the set of
even natural numbers).

I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction! On what?
I Induction on the size of R

does not work. This can prove
that all finite subsets of N have a least element. . .

I but it does not work for the infinite subsets (like the set of
even natural numbers).

I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction! On what?
I Induction on the size of R does not work.

This can prove
that all finite subsets of N have a least element. . .

I but it does not work for the infinite subsets (like the set of
even natural numbers).

I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction! On what?
I Induction on the size of R does not work. This can prove

that all finite subsets of N have a least element. . .

I but it does not work for the infinite subsets (like the set of
even natural numbers).

I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction! On what?
I Induction on the size of R does not work. This can prove

that all finite subsets of N have a least element. . .
I but it does not work for the infinite subsets (like the set of

even natural numbers).

I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction! On what?
I Induction on the size of R does not work. This can prove

that all finite subsets of N have a least element. . .
I but it does not work for the infinite subsets (like the set of

even natural numbers).
I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”.

The clause |R|= n
means it only works for finite R.



Well Ordering Principle for N
Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element. In other words, N is well ordered
under the usual ordering on N.

Proof.
I Induction! On what?
I Induction on the size of R does not work. This can prove

that all finite subsets of N have a least element. . .
I but it does not work for the infinite subsets (like the set of

even natural numbers).
I Specifically, induction on the size of R proves:

∀n ∈ N
[(
(R ⊆ N)∧ (|R|= n)∧ (R 6=∅)

)
=⇒ Q(R)

]
where Q(R) is “R has a least element”. The clause |R|= n
means it only works for finite R.



Proof of Well Ordering Principle for N

Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

Proof.

I Instead, try induction on which elements are in R.
I Inductive claim:

P(n) = [((R ⊆ N)∧ (R 6=∅)∧ (n ∈ R)) =⇒ Q(R)].
I Base case: For any R ⊆ N, if 0 ∈ R, then R has a least

element. Namely, 0.
I Suppose that if any of the elements 0,1, . . . ,n are in R,

then R has a least element.
I Consider a set R containing n+1. If R also contains

0,1, . . . ,n, then R has a least element.
I Otherwise, n+1 must be the least element of R.



Proof of Well Ordering Principle for N

Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

Proof.
I Instead, try induction on which elements are in R.

I Inductive claim:
P(n) = [((R ⊆ N)∧ (R 6=∅)∧ (n ∈ R)) =⇒ Q(R)].

I Base case: For any R ⊆ N, if 0 ∈ R, then R has a least
element. Namely, 0.

I Suppose that if any of the elements 0,1, . . . ,n are in R,
then R has a least element.

I Consider a set R containing n+1. If R also contains
0,1, . . . ,n, then R has a least element.

I Otherwise, n+1 must be the least element of R.



Proof of Well Ordering Principle for N

Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

Proof.
I Instead, try induction on which elements are in R.
I Inductive claim:

P(n) = [((R ⊆ N)∧ (R 6=∅)∧ (n ∈ R)) =⇒ Q(R)].

I Base case: For any R ⊆ N, if 0 ∈ R, then R has a least
element. Namely, 0.

I Suppose that if any of the elements 0,1, . . . ,n are in R,
then R has a least element.

I Consider a set R containing n+1. If R also contains
0,1, . . . ,n, then R has a least element.

I Otherwise, n+1 must be the least element of R.



Proof of Well Ordering Principle for N

Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

Proof.
I Instead, try induction on which elements are in R.
I Inductive claim:

P(n) = [((R ⊆ N)∧ (R 6=∅)∧ (n ∈ R)) =⇒ Q(R)].
I Base case: For any R ⊆ N, if 0 ∈ R, then R has a least

element.

Namely, 0.
I Suppose that if any of the elements 0,1, . . . ,n are in R,

then R has a least element.
I Consider a set R containing n+1. If R also contains

0,1, . . . ,n, then R has a least element.
I Otherwise, n+1 must be the least element of R.



Proof of Well Ordering Principle for N

Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

Proof.
I Instead, try induction on which elements are in R.
I Inductive claim:

P(n) = [((R ⊆ N)∧ (R 6=∅)∧ (n ∈ R)) =⇒ Q(R)].
I Base case: For any R ⊆ N, if 0 ∈ R, then R has a least

element. Namely, 0.

I Suppose that if any of the elements 0,1, . . . ,n are in R,
then R has a least element.

I Consider a set R containing n+1. If R also contains
0,1, . . . ,n, then R has a least element.

I Otherwise, n+1 must be the least element of R.



Proof of Well Ordering Principle for N

Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

Proof.
I Instead, try induction on which elements are in R.
I Inductive claim:

P(n) = [((R ⊆ N)∧ (R 6=∅)∧ (n ∈ R)) =⇒ Q(R)].
I Base case: For any R ⊆ N, if 0 ∈ R, then R has a least

element. Namely, 0.
I Suppose that if any of the elements 0,1, . . . ,n are in R,

then R has a least element.

I Consider a set R containing n+1. If R also contains
0,1, . . . ,n, then R has a least element.

I Otherwise, n+1 must be the least element of R.



Proof of Well Ordering Principle for N

Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

Proof.
I Instead, try induction on which elements are in R.
I Inductive claim:

P(n) = [((R ⊆ N)∧ (R 6=∅)∧ (n ∈ R)) =⇒ Q(R)].
I Base case: For any R ⊆ N, if 0 ∈ R, then R has a least

element. Namely, 0.
I Suppose that if any of the elements 0,1, . . . ,n are in R,

then R has a least element.
I Consider a set R containing n+1.

If R also contains
0,1, . . . ,n, then R has a least element.

I Otherwise, n+1 must be the least element of R.



Proof of Well Ordering Principle for N

Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

Proof.
I Instead, try induction on which elements are in R.
I Inductive claim:

P(n) = [((R ⊆ N)∧ (R 6=∅)∧ (n ∈ R)) =⇒ Q(R)].
I Base case: For any R ⊆ N, if 0 ∈ R, then R has a least

element. Namely, 0.
I Suppose that if any of the elements 0,1, . . . ,n are in R,

then R has a least element.
I Consider a set R containing n+1. If R also contains

0,1, . . . ,n, then R has a least element.

I Otherwise, n+1 must be the least element of R.



Proof of Well Ordering Principle for N

Well Ordering Principle for N: For any non-empty subset
R ⊆ N, R has a least element.

Proof.
I Instead, try induction on which elements are in R.
I Inductive claim:

P(n) = [((R ⊆ N)∧ (R 6=∅)∧ (n ∈ R)) =⇒ Q(R)].
I Base case: For any R ⊆ N, if 0 ∈ R, then R has a least

element. Namely, 0.
I Suppose that if any of the elements 0,1, . . . ,n are in R,

then R has a least element.
I Consider a set R containing n+1. If R also contains

0,1, . . . ,n, then R has a least element.
I Otherwise, n+1 must be the least element of R.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.

I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want
to show that ∀n ∈ N P(n) holds.

I Assume, for the sake of contradiction, that for some n ∈ N,
P(n) does NOT hold.

I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is
non-empty.

I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0). Since n0 is the least

element of R, then P(n0−1) is True and P(n0) is False.
I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)].

We want
to show that ∀n ∈ N P(n) holds.

I Assume, for the sake of contradiction, that for some n ∈ N,
P(n) does NOT hold.

I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is
non-empty.

I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0). Since n0 is the least

element of R, then P(n0−1) is True and P(n0) is False.
I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want

to show that ∀n ∈ N P(n) holds.

I Assume, for the sake of contradiction, that for some n ∈ N,
P(n) does NOT hold.

I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is
non-empty.

I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0). Since n0 is the least

element of R, then P(n0−1) is True and P(n0) is False.
I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want

to show that ∀n ∈ N P(n) holds.
I Assume, for the sake of contradiction, that for some n ∈ N,

P(n) does NOT hold.

I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is
non-empty.

I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0). Since n0 is the least

element of R, then P(n0−1) is True and P(n0) is False.
I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want

to show that ∀n ∈ N P(n) holds.
I Assume, for the sake of contradiction, that for some n ∈ N,

P(n) does NOT hold.
I Let R := {n ∈ N : P(n) does not hold}.

By assumption, R is
non-empty.

I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0). Since n0 is the least

element of R, then P(n0−1) is True and P(n0) is False.
I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want

to show that ∀n ∈ N P(n) holds.
I Assume, for the sake of contradiction, that for some n ∈ N,

P(n) does NOT hold.
I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is

non-empty.

I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0). Since n0 is the least

element of R, then P(n0−1) is True and P(n0) is False.
I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want

to show that ∀n ∈ N P(n) holds.
I Assume, for the sake of contradiction, that for some n ∈ N,

P(n) does NOT hold.
I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is

non-empty.
I By Well Ordering Principle, R has a least element n0.

I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0). Since n0 is the least

element of R, then P(n0−1) is True and P(n0) is False.
I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want

to show that ∀n ∈ N P(n) holds.
I Assume, for the sake of contradiction, that for some n ∈ N,

P(n) does NOT hold.
I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is

non-empty.
I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).

I Consider P(n0−1) =⇒ P(n0). Since n0 is the least
element of R, then P(n0−1) is True and P(n0) is False.

I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want

to show that ∀n ∈ N P(n) holds.
I Assume, for the sake of contradiction, that for some n ∈ N,

P(n) does NOT hold.
I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is

non-empty.
I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0).

Since n0 is the least
element of R, then P(n0−1) is True and P(n0) is False.

I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want

to show that ∀n ∈ N P(n) holds.
I Assume, for the sake of contradiction, that for some n ∈ N,

P(n) does NOT hold.
I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is

non-empty.
I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0). Since n0 is the least

element of R, then P(n0−1) is True and P(n0) is False.

I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Is Equivalent to Induction

The Well Ordering Principle implies the Principle of Induction.
I Suppose P(0) and ∀n ∈ N [P(n) =⇒ P(n+1)]. We want

to show that ∀n ∈ N P(n) holds.
I Assume, for the sake of contradiction, that for some n ∈ N,

P(n) does NOT hold.
I Let R := {n ∈ N : P(n) does not hold}. By assumption, R is

non-empty.
I By Well Ordering Principle, R has a least element n0.
I Here n0 6= 0 because we have proven P(0).
I Consider P(n0−1) =⇒ P(n0). Since n0 is the least

element of R, then P(n0−1) is True and P(n0) is False.
I So, P(n0−1) =⇒ P(n0) is False, which is a contradiction.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.

A well ordering tells us what the “next” element is.
I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1. Prove

P(x0) =⇒ P(x1).
I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1. Prove

P(x0) =⇒ P(x1).
I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).

I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1. Prove

P(x0) =⇒ P(x1).
I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).

I Let R = S \{x0}; then R has a least element x1. Prove
P(x0) =⇒ P(x1).

I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1.

Prove
P(x0) =⇒ P(x1).

I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1. Prove

P(x0) =⇒ P(x1).

I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1. Prove

P(x0) =⇒ P(x1).
I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1. Prove

P(x0) =⇒ P(x1).
I Continue. . .

So the question is: which sets can be well ordered?

I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1. Prove

P(x0) =⇒ P(x1).
I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!

I However, the well ordering on R will be very bizarre, so
trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1. Prove

P(x0) =⇒ P(x1).
I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.

2The standard axioms are called ZFC, for Zermelo-Fraenkel with
Choice. If you want to learn more, take Math 135.



Well Ordering Principle Conclusions
We can perform induction as long as we have a well ordering.
A well ordering tells us what the “next” element is.

I Say we want to prove ∀x ∈ S, P(x).
I S has a least element x0; prove P(x0).
I Let R = S \{x0}; then R has a least element x1. Prove

P(x0) =⇒ P(x1).
I Continue. . .

So the question is: which sets can be well ordered?
I According to the axioms of set theory2, all of them!
I However, the well ordering on R will be very bizarre, so

trying to use induction on R is not very useful.

The Well Ordering Principle can be used instead of induction.
2The standard axioms are called ZFC, for Zermelo-Fraenkel with

Choice. If you want to learn more, take Math 135.



Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

I In other words, we can divide a by b to get a quotient q and
a remainder r .

I This humble theorem will be quite useful to us when we
study modular arithmetic!

I Intuition: If a > 0, then we try to subtract as many copies of
b as possible before we hit 0.

I Example: Let a = 40 and b = 7. Consider

−9,−2,5,12,19,26,33,40,47,54, . . .

The Division Algorithm returns 40 = 7 ·5+5.



Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

I In other words, we can divide a by b to get a quotient q and
a remainder r .

I This humble theorem will be quite useful to us when we
study modular arithmetic!

I Intuition: If a > 0, then we try to subtract as many copies of
b as possible before we hit 0.

I Example: Let a = 40 and b = 7. Consider

−9,−2,5,12,19,26,33,40,47,54, . . .

The Division Algorithm returns 40 = 7 ·5+5.



Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

I In other words, we can divide a by b to get a quotient q and
a remainder r .

I This humble theorem will be quite useful to us when we
study modular arithmetic!

I Intuition: If a > 0, then we try to subtract as many copies of
b as possible before we hit 0.

I Example: Let a = 40 and b = 7. Consider

−9,−2,5,12,19,26,33,40,47,54, . . .

The Division Algorithm returns 40 = 7 ·5+5.



Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

I In other words, we can divide a by b to get a quotient q and
a remainder r .

I This humble theorem will be quite useful to us when we
study modular arithmetic!

I Intuition: If a > 0, then we try to subtract as many copies of
b as possible before we hit 0.

I Example: Let a = 40 and b = 7. Consider

−9,−2,5,12,19,26,33,40,47,54, . . .

The Division Algorithm returns 40 = 7 ·5+5.



Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

I In other words, we can divide a by b to get a quotient q and
a remainder r .

I This humble theorem will be quite useful to us when we
study modular arithmetic!

I Intuition: If a > 0, then we try to subtract as many copies of
b as possible before we hit 0.

I Example: Let a = 40 and b = 7.

Consider

−9,−2,5,12,19,26,33,40,47,54, . . .

The Division Algorithm returns 40 = 7 ·5+5.



Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

I In other words, we can divide a by b to get a quotient q and
a remainder r .

I This humble theorem will be quite useful to us when we
study modular arithmetic!

I Intuition: If a > 0, then we try to subtract as many copies of
b as possible before we hit 0.

I Example: Let a = 40 and b = 7. Consider

−9,−2,5,12,19,26,33,40,47,54, . . .

The Division Algorithm returns 40 = 7 ·5+5.



Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

I In other words, we can divide a by b to get a quotient q and
a remainder r .

I This humble theorem will be quite useful to us when we
study modular arithmetic!

I Intuition: If a > 0, then we try to subtract as many copies of
b as possible before we hit 0.

I Example: Let a = 40 and b = 7. Consider

−9,−2,5,12,19,26,33,40,47,54, . . .

The Division Algorithm returns 40 = 7 ·5+5.



Proof of the Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

Proof.

I Consider the set S = {a−bq : q ∈ Z and a−bq ≥ 0}.
I S is non-empty, since we can make −bq arbitrarily large.
I Let r be the least element of S (Well Ordering Property).
I Then, r ≥ 0 and r = a−bq for some q ∈ Z.
I Claim: r ≤ b−1. Indeed, if r ≥ b, then a− (q+1)b would

be a smaller element of S.
I So, a = bq+ r for q ∈ Z and r ∈ {0,1, . . . ,b−1}.
I We will skip the proof that q and r are unique.



Proof of the Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

Proof.
I Consider the set S = {a−bq : q ∈ Z and a−bq ≥ 0}.

I S is non-empty, since we can make −bq arbitrarily large.
I Let r be the least element of S (Well Ordering Property).
I Then, r ≥ 0 and r = a−bq for some q ∈ Z.
I Claim: r ≤ b−1. Indeed, if r ≥ b, then a− (q+1)b would

be a smaller element of S.
I So, a = bq+ r for q ∈ Z and r ∈ {0,1, . . . ,b−1}.
I We will skip the proof that q and r are unique.



Proof of the Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

Proof.
I Consider the set S = {a−bq : q ∈ Z and a−bq ≥ 0}.
I S is non-empty, since we can make −bq arbitrarily large.

I Let r be the least element of S (Well Ordering Property).
I Then, r ≥ 0 and r = a−bq for some q ∈ Z.
I Claim: r ≤ b−1. Indeed, if r ≥ b, then a− (q+1)b would

be a smaller element of S.
I So, a = bq+ r for q ∈ Z and r ∈ {0,1, . . . ,b−1}.
I We will skip the proof that q and r are unique.



Proof of the Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

Proof.
I Consider the set S = {a−bq : q ∈ Z and a−bq ≥ 0}.
I S is non-empty, since we can make −bq arbitrarily large.
I Let r be the least element of S (Well Ordering Property).

I Then, r ≥ 0 and r = a−bq for some q ∈ Z.
I Claim: r ≤ b−1. Indeed, if r ≥ b, then a− (q+1)b would

be a smaller element of S.
I So, a = bq+ r for q ∈ Z and r ∈ {0,1, . . . ,b−1}.
I We will skip the proof that q and r are unique.



Proof of the Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

Proof.
I Consider the set S = {a−bq : q ∈ Z and a−bq ≥ 0}.
I S is non-empty, since we can make −bq arbitrarily large.
I Let r be the least element of S (Well Ordering Property).
I Then, r ≥ 0 and r = a−bq for some q ∈ Z.

I Claim: r ≤ b−1. Indeed, if r ≥ b, then a− (q+1)b would
be a smaller element of S.

I So, a = bq+ r for q ∈ Z and r ∈ {0,1, . . . ,b−1}.
I We will skip the proof that q and r are unique.



Proof of the Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

Proof.
I Consider the set S = {a−bq : q ∈ Z and a−bq ≥ 0}.
I S is non-empty, since we can make −bq arbitrarily large.
I Let r be the least element of S (Well Ordering Property).
I Then, r ≥ 0 and r = a−bq for some q ∈ Z.
I Claim: r ≤ b−1.

Indeed, if r ≥ b, then a− (q+1)b would
be a smaller element of S.

I So, a = bq+ r for q ∈ Z and r ∈ {0,1, . . . ,b−1}.
I We will skip the proof that q and r are unique.



Proof of the Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

Proof.
I Consider the set S = {a−bq : q ∈ Z and a−bq ≥ 0}.
I S is non-empty, since we can make −bq arbitrarily large.
I Let r be the least element of S (Well Ordering Property).
I Then, r ≥ 0 and r = a−bq for some q ∈ Z.
I Claim: r ≤ b−1. Indeed, if r ≥ b, then a− (q+1)b would

be a smaller element of S.

I So, a = bq+ r for q ∈ Z and r ∈ {0,1, . . . ,b−1}.
I We will skip the proof that q and r are unique.



Proof of the Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

Proof.
I Consider the set S = {a−bq : q ∈ Z and a−bq ≥ 0}.
I S is non-empty, since we can make −bq arbitrarily large.
I Let r be the least element of S (Well Ordering Property).
I Then, r ≥ 0 and r = a−bq for some q ∈ Z.
I Claim: r ≤ b−1. Indeed, if r ≥ b, then a− (q+1)b would

be a smaller element of S.
I So, a = bq+ r for q ∈ Z and r ∈ {0,1, . . . ,b−1}.

I We will skip the proof that q and r are unique.



Proof of the Division Algorithm

Division Algorithm: Given a,b ∈ Z with b > 0, there exist
unique integers q ∈ Z and r ∈ {0,1, . . . ,b−1} with a = bq+ r .

Proof.
I Consider the set S = {a−bq : q ∈ Z and a−bq ≥ 0}.
I S is non-empty, since we can make −bq arbitrarily large.
I Let r be the least element of S (Well Ordering Property).
I Then, r ≥ 0 and r = a−bq for some q ∈ Z.
I Claim: r ≤ b−1. Indeed, if r ≥ b, then a− (q+1)b would

be a smaller element of S.
I So, a = bq+ r for q ∈ Z and r ∈ {0,1, . . . ,b−1}.
I We will skip the proof that q and r are unique.



The Puzzle of Green-Eyed Dragons

100 green-eyed dragons live on an island. They have a rule: if
you find out that you have green eyes, you must commit ritual
suicide. Despite this rule, they live in peace.

One day, a visitor comes to the island and says “I see a dragon
here has green eyes”. The visitor leaves.

On day 100, every dragon commits suicide. Why?



The Puzzle of Green-Eyed Dragons

100 green-eyed dragons live on an island. They have a rule: if
you find out that you have green eyes, you must commit ritual
suicide. Despite this rule, they live in peace.

One day, a visitor comes to the island and says “I see a dragon
here has green eyes”. The visitor leaves.

On day 100, every dragon commits suicide. Why?



The Puzzle of Green-Eyed Dragons

100 green-eyed dragons live on an island. They have a rule: if
you find out that you have green eyes, you must commit ritual
suicide. Despite this rule, they live in peace.

One day, a visitor comes to the island and says “I see a dragon
here has green eyes”. The visitor leaves.

On day 100, every dragon commits suicide.

Why?



The Puzzle of Green-Eyed Dragons

100 green-eyed dragons live on an island. They have a rule: if
you find out that you have green eyes, you must commit ritual
suicide. Despite this rule, they live in peace.

One day, a visitor comes to the island and says “I see a dragon
here has green eyes”. The visitor leaves.

On day 100, every dragon commits suicide. Why?



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.
I Base case: There is one green-eyed dragon. After one

day, the dragon performs the ritual.
I Inductive hypothesis: Assume the claim is true for n

green-eyed dragons.
I Now consider an island of n+1 green-eyed dragons.
I Inductive step: On day n+1, each green-eyed dragon

sees n other green-eyed dragons.
I “If there were only n green-eyed dragons, they would have

died on day n.
I But they did not, so there are n+1 green-eyed dragons.

Including me!”



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.

I Base case: There is one green-eyed dragon. After one
day, the dragon performs the ritual.

I Inductive hypothesis: Assume the claim is true for n
green-eyed dragons.

I Now consider an island of n+1 green-eyed dragons.
I Inductive step: On day n+1, each green-eyed dragon

sees n other green-eyed dragons.
I “If there were only n green-eyed dragons, they would have

died on day n.
I But they did not, so there are n+1 green-eyed dragons.

Including me!”



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.
I Base case: There is one green-eyed dragon.

After one
day, the dragon performs the ritual.

I Inductive hypothesis: Assume the claim is true for n
green-eyed dragons.

I Now consider an island of n+1 green-eyed dragons.
I Inductive step: On day n+1, each green-eyed dragon

sees n other green-eyed dragons.
I “If there were only n green-eyed dragons, they would have

died on day n.
I But they did not, so there are n+1 green-eyed dragons.

Including me!”



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.
I Base case: There is one green-eyed dragon. After one

day, the dragon performs the ritual.

I Inductive hypothesis: Assume the claim is true for n
green-eyed dragons.

I Now consider an island of n+1 green-eyed dragons.
I Inductive step: On day n+1, each green-eyed dragon

sees n other green-eyed dragons.
I “If there were only n green-eyed dragons, they would have

died on day n.
I But they did not, so there are n+1 green-eyed dragons.

Including me!”



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.
I Base case: There is one green-eyed dragon. After one

day, the dragon performs the ritual.
I Inductive hypothesis: Assume the claim is true for n

green-eyed dragons.

I Now consider an island of n+1 green-eyed dragons.
I Inductive step: On day n+1, each green-eyed dragon

sees n other green-eyed dragons.
I “If there were only n green-eyed dragons, they would have

died on day n.
I But they did not, so there are n+1 green-eyed dragons.

Including me!”



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.
I Base case: There is one green-eyed dragon. After one

day, the dragon performs the ritual.
I Inductive hypothesis: Assume the claim is true for n

green-eyed dragons.
I Now consider an island of n+1 green-eyed dragons.

I Inductive step: On day n+1, each green-eyed dragon
sees n other green-eyed dragons.

I “If there were only n green-eyed dragons, they would have
died on day n.

I But they did not, so there are n+1 green-eyed dragons.
Including me!”



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.
I Base case: There is one green-eyed dragon. After one

day, the dragon performs the ritual.
I Inductive hypothesis: Assume the claim is true for n

green-eyed dragons.
I Now consider an island of n+1 green-eyed dragons.
I Inductive step: On day n+1, each green-eyed dragon

sees n other green-eyed dragons.

I “If there were only n green-eyed dragons, they would have
died on day n.

I But they did not, so there are n+1 green-eyed dragons.
Including me!”



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.
I Base case: There is one green-eyed dragon. After one

day, the dragon performs the ritual.
I Inductive hypothesis: Assume the claim is true for n

green-eyed dragons.
I Now consider an island of n+1 green-eyed dragons.
I Inductive step: On day n+1, each green-eyed dragon

sees n other green-eyed dragons.
I “If there were only n green-eyed dragons, they would have

died on day n.

I But they did not, so there are n+1 green-eyed dragons.
Including me!”



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.
I Base case: There is one green-eyed dragon. After one

day, the dragon performs the ritual.
I Inductive hypothesis: Assume the claim is true for n

green-eyed dragons.
I Now consider an island of n+1 green-eyed dragons.
I Inductive step: On day n+1, each green-eyed dragon

sees n other green-eyed dragons.
I “If there were only n green-eyed dragons, they would have

died on day n.
I But they did not, so there are n+1 green-eyed dragons.

Including me!”



The Dragons Took CS 70

Claim: For every positive integer n, if there are n green-eyed
dragons on the island, they commit ritual suicide on day n.

Proof.
I Base case: There is one green-eyed dragon. After one

day, the dragon performs the ritual.
I Inductive hypothesis: Assume the claim is true for n

green-eyed dragons.
I Now consider an island of n+1 green-eyed dragons.
I Inductive step: On day n+1, each green-eyed dragon

sees n other green-eyed dragons.
I “If there were only n green-eyed dragons, they would have

died on day n.
I But they did not, so there are n+1 green-eyed dragons.

Including me!”



Common Knowledge

Objection: The visitor did not tell the dragons anything new!

Consider the case of two green-eyed dragons.
I Each dragon knows the following fact:

There is at least one dragon with green eyes. (?)

I But does each dragon know that the other knows (?)? NO.
“If I have blue eyes, then the other does not know (?).”

I After the visitor comes, each dragon knows (?). . . and each
dragon knows that every other dragon knows (?).

I The case of 100 dragons is 100-level nested thinking.
“Does she know that I know that he knows. . . ”



Common Knowledge

Objection: The visitor did not tell the dragons anything new!

Consider the case of two green-eyed dragons.

I Each dragon knows the following fact:

There is at least one dragon with green eyes. (?)

I But does each dragon know that the other knows (?)? NO.
“If I have blue eyes, then the other does not know (?).”

I After the visitor comes, each dragon knows (?). . . and each
dragon knows that every other dragon knows (?).

I The case of 100 dragons is 100-level nested thinking.
“Does she know that I know that he knows. . . ”



Common Knowledge

Objection: The visitor did not tell the dragons anything new!

Consider the case of two green-eyed dragons.
I Each dragon knows the following fact:

There is at least one dragon with green eyes. (?)

I But does each dragon know that the other knows (?)? NO.
“If I have blue eyes, then the other does not know (?).”

I After the visitor comes, each dragon knows (?). . . and each
dragon knows that every other dragon knows (?).

I The case of 100 dragons is 100-level nested thinking.
“Does she know that I know that he knows. . . ”



Common Knowledge

Objection: The visitor did not tell the dragons anything new!

Consider the case of two green-eyed dragons.
I Each dragon knows the following fact:

There is at least one dragon with green eyes. (?)

I But does each dragon know that the other knows (?)? NO.

“If I have blue eyes, then the other does not know (?).”
I After the visitor comes, each dragon knows (?). . . and each

dragon knows that every other dragon knows (?).
I The case of 100 dragons is 100-level nested thinking.

“Does she know that I know that he knows. . . ”



Common Knowledge

Objection: The visitor did not tell the dragons anything new!

Consider the case of two green-eyed dragons.
I Each dragon knows the following fact:

There is at least one dragon with green eyes. (?)

I But does each dragon know that the other knows (?)? NO.
“If I have blue eyes, then the other does not know (?).”

I After the visitor comes, each dragon knows (?). . . and each
dragon knows that every other dragon knows (?).

I The case of 100 dragons is 100-level nested thinking.
“Does she know that I know that he knows. . . ”



Common Knowledge

Objection: The visitor did not tell the dragons anything new!

Consider the case of two green-eyed dragons.
I Each dragon knows the following fact:

There is at least one dragon with green eyes. (?)

I But does each dragon know that the other knows (?)? NO.
“If I have blue eyes, then the other does not know (?).”

I After the visitor comes, each dragon knows (?). . . and each
dragon knows that every other dragon knows (?).

I The case of 100 dragons is 100-level nested thinking.
“Does she know that I know that he knows. . . ”



Common Knowledge

Objection: The visitor did not tell the dragons anything new!

Consider the case of two green-eyed dragons.
I Each dragon knows the following fact:

There is at least one dragon with green eyes. (?)

I But does each dragon know that the other knows (?)? NO.
“If I have blue eyes, then the other does not know (?).”

I After the visitor comes, each dragon knows (?). . . and each
dragon knows that every other dragon knows (?).

I The case of 100 dragons is 100-level nested thinking.

“Does she know that I know that he knows. . . ”



Common Knowledge

Objection: The visitor did not tell the dragons anything new!

Consider the case of two green-eyed dragons.
I Each dragon knows the following fact:

There is at least one dragon with green eyes. (?)

I But does each dragon know that the other knows (?)? NO.
“If I have blue eyes, then the other does not know (?).”

I After the visitor comes, each dragon knows (?). . . and each
dragon knows that every other dragon knows (?).

I The case of 100 dragons is 100-level nested thinking.
“Does she know that I know that he knows. . . ”



Seven Bridges of Königsberg

New topic: graphs.

Figure: The figure is by Bogdan Giuşcă (License).

Starting from anywhere, can you cross every bridge exactly
once and end up where you started?

This problem was solved by Euler in 1736.

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png#/media/File:Konigsberg_bridges.png


Seven Bridges of Königsberg

New topic: graphs.

Figure: The figure is by Bogdan Giuşcă (License).

Starting from anywhere, can you cross every bridge exactly
once and end up where you started?

This problem was solved by Euler in 1736.

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png#/media/File:Konigsberg_bridges.png


Graph Theory

Do not confuse “graphs” in graph theory with the graphs of
functions.

A graph G = (V ,E) consists of:
I V , a set of vertices or nodes, and
I E ⊆ V ×V , a set of edges.

Graphs are visualized as drawings, where nodes are circles
and edges are lines connecting their nodes.

We only consider finite graphs.



Graph Theory

Do not confuse “graphs” in graph theory with the graphs of
functions.

A graph G = (V ,E) consists of:

I V , a set of vertices or nodes, and
I E ⊆ V ×V , a set of edges.

Graphs are visualized as drawings, where nodes are circles
and edges are lines connecting their nodes.

We only consider finite graphs.



Graph Theory

Do not confuse “graphs” in graph theory with the graphs of
functions.

A graph G = (V ,E) consists of:
I V , a set of vertices or nodes, and
I E ⊆ V ×V , a set of edges.

Graphs are visualized as drawings, where nodes are circles
and edges are lines connecting their nodes.

We only consider finite graphs.



Graph Theory

Do not confuse “graphs” in graph theory with the graphs of
functions.

A graph G = (V ,E) consists of:
I V , a set of vertices or nodes, and
I E ⊆ V ×V , a set of edges.

Graphs are visualized as drawings, where nodes are circles
and edges are lines connecting their nodes.

We only consider finite graphs.



Graph Theory

Do not confuse “graphs” in graph theory with the graphs of
functions.

A graph G = (V ,E) consists of:
I V , a set of vertices or nodes, and
I E ⊆ V ×V , a set of edges.

Graphs are visualized as drawings, where nodes are circles
and edges are lines connecting their nodes.

We only consider finite graphs.



Graph Terminology

An edge is a pair {u,v} where u,v ∈ V .

I Here, an edge has no direction. We call these graphs
undirected. There are directed graphs (digraphs) too.

I The vertices u and v are called the endpoints of the edge.
I The edge {u,v} is incident to the vertices u and v .
I The degree of a vertex v , degv , is the number of edges

incident to it. Every vertex has degree 3:

I The neighbors of a vertex v are the vertices which are
connected (via an edge) to v .



Graph Terminology

An edge is a pair {u,v} where u,v ∈ V .
I Here, an edge has no direction.

We call these graphs
undirected. There are directed graphs (digraphs) too.

I The vertices u and v are called the endpoints of the edge.
I The edge {u,v} is incident to the vertices u and v .
I The degree of a vertex v , degv , is the number of edges

incident to it. Every vertex has degree 3:

I The neighbors of a vertex v are the vertices which are
connected (via an edge) to v .



Graph Terminology

An edge is a pair {u,v} where u,v ∈ V .
I Here, an edge has no direction. We call these graphs

undirected.

There are directed graphs (digraphs) too.
I The vertices u and v are called the endpoints of the edge.
I The edge {u,v} is incident to the vertices u and v .
I The degree of a vertex v , degv , is the number of edges

incident to it. Every vertex has degree 3:

I The neighbors of a vertex v are the vertices which are
connected (via an edge) to v .



Graph Terminology

An edge is a pair {u,v} where u,v ∈ V .
I Here, an edge has no direction. We call these graphs

undirected. There are directed graphs (digraphs) too.

I The vertices u and v are called the endpoints of the edge.
I The edge {u,v} is incident to the vertices u and v .
I The degree of a vertex v , degv , is the number of edges

incident to it. Every vertex has degree 3:

I The neighbors of a vertex v are the vertices which are
connected (via an edge) to v .



Graph Terminology

An edge is a pair {u,v} where u,v ∈ V .
I Here, an edge has no direction. We call these graphs

undirected. There are directed graphs (digraphs) too.
I The vertices u and v are called the endpoints of the edge.

I The edge {u,v} is incident to the vertices u and v .
I The degree of a vertex v , degv , is the number of edges

incident to it. Every vertex has degree 3:

I The neighbors of a vertex v are the vertices which are
connected (via an edge) to v .



Graph Terminology

An edge is a pair {u,v} where u,v ∈ V .
I Here, an edge has no direction. We call these graphs

undirected. There are directed graphs (digraphs) too.
I The vertices u and v are called the endpoints of the edge.
I The edge {u,v} is incident to the vertices u and v .

I The degree of a vertex v , degv , is the number of edges
incident to it. Every vertex has degree 3:

I The neighbors of a vertex v are the vertices which are
connected (via an edge) to v .



Graph Terminology

An edge is a pair {u,v} where u,v ∈ V .
I Here, an edge has no direction. We call these graphs

undirected. There are directed graphs (digraphs) too.
I The vertices u and v are called the endpoints of the edge.
I The edge {u,v} is incident to the vertices u and v .
I The degree of a vertex v , degv , is the number of edges

incident to it.

Every vertex has degree 3:

I The neighbors of a vertex v are the vertices which are
connected (via an edge) to v .



Graph Terminology

An edge is a pair {u,v} where u,v ∈ V .
I Here, an edge has no direction. We call these graphs

undirected. There are directed graphs (digraphs) too.
I The vertices u and v are called the endpoints of the edge.
I The edge {u,v} is incident to the vertices u and v .
I The degree of a vertex v , degv , is the number of edges

incident to it. Every vertex has degree 3:

I The neighbors of a vertex v are the vertices which are
connected (via an edge) to v .



Graph Terminology

An edge is a pair {u,v} where u,v ∈ V .
I Here, an edge has no direction. We call these graphs

undirected. There are directed graphs (digraphs) too.
I The vertices u and v are called the endpoints of the edge.
I The edge {u,v} is incident to the vertices u and v .
I The degree of a vertex v , degv , is the number of edges

incident to it. Every vertex has degree 3:

I The neighbors of a vertex v are the vertices which are
connected (via an edge) to v .



Handshaking Lemma

Lemma: ∑v∈V degv = 2|E |.

Proof.
I Think of the vertices as people. The edges are

handshakes.
I Then degv is the number of handshakes that v gives.
I Each handshake contributes 2 to the total degree.
I Total degree is twice the number of handshakes.



Handshaking Lemma

Lemma: ∑v∈V degv = 2|E |.

Proof.

I Think of the vertices as people. The edges are
handshakes.

I Then degv is the number of handshakes that v gives.
I Each handshake contributes 2 to the total degree.
I Total degree is twice the number of handshakes.



Handshaking Lemma

Lemma: ∑v∈V degv = 2|E |.

Proof.
I Think of the vertices as people.

The edges are
handshakes.

I Then degv is the number of handshakes that v gives.
I Each handshake contributes 2 to the total degree.
I Total degree is twice the number of handshakes.



Handshaking Lemma

Lemma: ∑v∈V degv = 2|E |.

Proof.
I Think of the vertices as people. The edges are

handshakes.

I Then degv is the number of handshakes that v gives.
I Each handshake contributes 2 to the total degree.
I Total degree is twice the number of handshakes.



Handshaking Lemma

Lemma: ∑v∈V degv = 2|E |.

Proof.
I Think of the vertices as people. The edges are

handshakes.
I Then degv is the number of handshakes that v gives.

I Each handshake contributes 2 to the total degree.
I Total degree is twice the number of handshakes.



Handshaking Lemma

Lemma: ∑v∈V degv = 2|E |.

Proof.
I Think of the vertices as people. The edges are

handshakes.
I Then degv is the number of handshakes that v gives.
I Each handshake contributes 2 to the total degree.

I Total degree is twice the number of handshakes.



Handshaking Lemma

Lemma: ∑v∈V degv = 2|E |.

Proof.
I Think of the vertices as people. The edges are

handshakes.
I Then degv is the number of handshakes that v gives.
I Each handshake contributes 2 to the total degree.
I Total degree is twice the number of handshakes.



Walks, Paths, Tours, Cycles

A

B

C

D

A walk is a sequence of edges {v0,v1},{v1,v2}, . . . ,{vn−1,vn}.

Example: {A,B},{B,D},{D,B},{B,C}.
A simple path is a walk with no repeated edges, no repeated
vertices.

Example: {A,B},{B,D}.
A tour is a walk which starts and ends at the same vertex.

Example: {A,B},{B,A}.
A cycle is a tour with no repeated edges.

Example: {A,B},{B,D},{D,A}.



Walks, Paths, Tours, Cycles

A

B

C

D

A walk is a sequence of edges {v0,v1},{v1,v2}, . . . ,{vn−1,vn}.
Example: {A,B},{B,D},{D,B},{B,C}.

A simple path is a walk with no repeated edges, no repeated
vertices.

Example: {A,B},{B,D}.
A tour is a walk which starts and ends at the same vertex.

Example: {A,B},{B,A}.
A cycle is a tour with no repeated edges.

Example: {A,B},{B,D},{D,A}.



Walks, Paths, Tours, Cycles

A

B

C

D

A walk is a sequence of edges {v0,v1},{v1,v2}, . . . ,{vn−1,vn}.
Example: {A,B},{B,D},{D,B},{B,C}.

A simple path is a walk with no repeated edges, no repeated
vertices.

Example: {A,B},{B,D}.
A tour is a walk which starts and ends at the same vertex.

Example: {A,B},{B,A}.
A cycle is a tour with no repeated edges.

Example: {A,B},{B,D},{D,A}.



Walks, Paths, Tours, Cycles

A

B

C

D

A walk is a sequence of edges {v0,v1},{v1,v2}, . . . ,{vn−1,vn}.
Example: {A,B},{B,D},{D,B},{B,C}.

A simple path is a walk with no repeated edges, no repeated
vertices.

Example: {A,B},{B,D}.

A tour is a walk which starts and ends at the same vertex.
Example: {A,B},{B,A}.

A cycle is a tour with no repeated edges.
Example: {A,B},{B,D},{D,A}.



Walks, Paths, Tours, Cycles

A

B

C

D

A walk is a sequence of edges {v0,v1},{v1,v2}, . . . ,{vn−1,vn}.
Example: {A,B},{B,D},{D,B},{B,C}.

A simple path is a walk with no repeated edges, no repeated
vertices.

Example: {A,B},{B,D}.
A tour is a walk which starts and ends at the same vertex.

Example: {A,B},{B,A}.
A cycle is a tour with no repeated edges.

Example: {A,B},{B,D},{D,A}.



Walks, Paths, Tours, Cycles

A

B

C

D

A walk is a sequence of edges {v0,v1},{v1,v2}, . . . ,{vn−1,vn}.
Example: {A,B},{B,D},{D,B},{B,C}.

A simple path is a walk with no repeated edges, no repeated
vertices.

Example: {A,B},{B,D}.
A tour is a walk which starts and ends at the same vertex.

Example: {A,B},{B,A}.

A cycle is a tour with no repeated edges.
Example: {A,B},{B,D},{D,A}.



Walks, Paths, Tours, Cycles

A

B

C

D

A walk is a sequence of edges {v0,v1},{v1,v2}, . . . ,{vn−1,vn}.
Example: {A,B},{B,D},{D,B},{B,C}.

A simple path is a walk with no repeated edges, no repeated
vertices.

Example: {A,B},{B,D}.
A tour is a walk which starts and ends at the same vertex.

Example: {A,B},{B,A}.
A cycle is a tour with no repeated edges.

Example: {A,B},{B,D},{D,A}.



Walks, Paths, Tours, Cycles

A

B

C

D

A walk is a sequence of edges {v0,v1},{v1,v2}, . . . ,{vn−1,vn}.
Example: {A,B},{B,D},{D,B},{B,C}.

A simple path is a walk with no repeated edges, no repeated
vertices.

Example: {A,B},{B,D}.
A tour is a walk which starts and ends at the same vertex.

Example: {A,B},{B,A}.
A cycle is a tour with no repeated edges.

Example: {A,B},{B,D},{D,A}.



Connectivity

A graph is connected if for any pair of vertices, there exists a
path between the vertices.

All the graphs we saw so far are connected. Here is one that is
not connected:

These are called isolated vertices.

In the directed case, connectivity is not so simple. It may be
possible to reach v from u, but not u from v .



Connectivity

A graph is connected if for any pair of vertices, there exists a
path between the vertices.

All the graphs we saw so far are connected.

Here is one that is
not connected:

These are called isolated vertices.

In the directed case, connectivity is not so simple. It may be
possible to reach v from u, but not u from v .



Connectivity

A graph is connected if for any pair of vertices, there exists a
path between the vertices.

All the graphs we saw so far are connected. Here is one that is
not connected:

These are called isolated vertices.

In the directed case, connectivity is not so simple. It may be
possible to reach v from u, but not u from v .



Connectivity

A graph is connected if for any pair of vertices, there exists a
path between the vertices.

All the graphs we saw so far are connected. Here is one that is
not connected:

These are called isolated vertices.

In the directed case, connectivity is not so simple.

It may be
possible to reach v from u, but not u from v .



Connectivity

A graph is connected if for any pair of vertices, there exists a
path between the vertices.

All the graphs we saw so far are connected. Here is one that is
not connected:

These are called isolated vertices.

In the directed case, connectivity is not so simple. It may be
possible to reach v from u, but not u from v .



The Königsberg Graph

Figure: The figure on the left is by Bogdan Giuşcă (License). The
figure on the right is stolen from Satish Rao’s slides.

We abstract out the unnecessary details to get a graph.

Königsberg Bridges Problem: Does there exist a tour in the
graph which visits every edge exactly once?

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png#/media/File:Konigsberg_bridges.png


The Königsberg Graph

Figure: The figure on the left is by Bogdan Giuşcă (License). The
figure on the right is stolen from Satish Rao’s slides.

We abstract out the unnecessary details to get a graph.

Königsberg Bridges Problem: Does there exist a tour in the
graph which visits every edge exactly once?

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png#/media/File:Konigsberg_bridges.png


Eulerian Tours

Königsberg Bridges Problem: Does there exist a tour in the
graph which visits every edge exactly once?

In honor of Euler, we make the following definition:

Definition: An Eulerian tour is a tour which uses every edge
exactly once.

Of the graphs we have seen so far, which have Eulerian tours?



Eulerian Tours

Königsberg Bridges Problem: Does there exist a tour in the
graph which visits every edge exactly once?

In honor of Euler, we make the following definition:

Definition: An Eulerian tour is a tour which uses every edge
exactly once.

Of the graphs we have seen so far, which have Eulerian tours?



Eulerian Tours

Königsberg Bridges Problem: Does there exist a tour in the
graph which visits every edge exactly once?

In honor of Euler, we make the following definition:

Definition: An Eulerian tour is a tour which uses every edge
exactly once.

Of the graphs we have seen so far, which have Eulerian tours?



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof ( =⇒ ).
I Connected: The Eulerian tour connects all of the vertices.
I Even degree: Each time the tour visits a vertex, it must

enter and exit through different edges.
I Each visit to the vertex contributes two to the degree of the

vertex.
I The tour uses all edges.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof ( =⇒ ).

I Connected: The Eulerian tour connects all of the vertices.
I Even degree: Each time the tour visits a vertex, it must

enter and exit through different edges.
I Each visit to the vertex contributes two to the degree of the

vertex.
I The tour uses all edges.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof ( =⇒ ).
I Connected: The Eulerian tour connects all of the vertices.

I Even degree: Each time the tour visits a vertex, it must
enter and exit through different edges.

I Each visit to the vertex contributes two to the degree of the
vertex.

I The tour uses all edges.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof ( =⇒ ).
I Connected: The Eulerian tour connects all of the vertices.
I Even degree: Each time the tour visits a vertex, it must

enter and exit through different edges.

I Each visit to the vertex contributes two to the degree of the
vertex.

I The tour uses all edges.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof ( =⇒ ).
I Connected: The Eulerian tour connects all of the vertices.
I Even degree: Each time the tour visits a vertex, it must

enter and exit through different edges.
I Each visit to the vertex contributes two to the degree of the

vertex.

I The tour uses all edges.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof ( =⇒ ).
I Connected: The Eulerian tour connects all of the vertices.
I Even degree: Each time the tour visits a vertex, it must

enter and exit through different edges.
I Each visit to the vertex contributes two to the degree of the

vertex.
I The tour uses all edges.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof (⇐= ).

I Take a tour around the graph, just keep taking edges!
I Each vertex has even degree, so if you get stuck, you must

be stuck at the vertex you started at.
I Remove the edges in the tour; the resulting graph has

connected components.
I Each of these components must be connected and each

vertex has even degree, so recursively find Eulerian tours.
I The original tour touches each of these Eulerian tours

(original graph is connected), so “splice together” the tours.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof (⇐= ).
I Take a tour around the graph, just keep taking edges!

I Each vertex has even degree, so if you get stuck, you must
be stuck at the vertex you started at.

I Remove the edges in the tour; the resulting graph has
connected components.

I Each of these components must be connected and each
vertex has even degree, so recursively find Eulerian tours.

I The original tour touches each of these Eulerian tours
(original graph is connected), so “splice together” the tours.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof (⇐= ).
I Take a tour around the graph, just keep taking edges!
I Each vertex has even degree, so if you get stuck, you must

be stuck at the vertex you started at.

I Remove the edges in the tour; the resulting graph has
connected components.

I Each of these components must be connected and each
vertex has even degree, so recursively find Eulerian tours.

I The original tour touches each of these Eulerian tours
(original graph is connected), so “splice together” the tours.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof (⇐= ).
I Take a tour around the graph, just keep taking edges!
I Each vertex has even degree, so if you get stuck, you must

be stuck at the vertex you started at.
I Remove the edges in the tour; the resulting graph has

connected components.

I Each of these components must be connected and each
vertex has even degree, so recursively find Eulerian tours.

I The original tour touches each of these Eulerian tours
(original graph is connected), so “splice together” the tours.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof (⇐= ).
I Take a tour around the graph, just keep taking edges!
I Each vertex has even degree, so if you get stuck, you must

be stuck at the vertex you started at.
I Remove the edges in the tour; the resulting graph has

connected components.
I Each of these components must be connected and each

vertex has even degree, so recursively find Eulerian tours.

I The original tour touches each of these Eulerian tours
(original graph is connected), so “splice together” the tours.



Conditions for Eulerian Tour

Theorem: A graph with no isolated vertices has an Eulerian
tour iff it is connected and every vertex has even degree.

Proof (⇐= ).
I Take a tour around the graph, just keep taking edges!
I Each vertex has even degree, so if you get stuck, you must

be stuck at the vertex you started at.
I Remove the edges in the tour; the resulting graph has

connected components.
I Each of these components must be connected and each

vertex has even degree, so recursively find Eulerian tours.
I The original tour touches each of these Eulerian tours

(original graph is connected), so “splice together” the tours.



Solution to the Königsberg Bridges Problem

Figure: The figure on the left is by Bogdan Giuşcă (License). The
figure on the right is stolen from Satish Rao’s slides.

Is the graph on the right connected, and does each vertex have
even degree?

NO. There is no Eulerian tour!

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png#/media/File:Konigsberg_bridges.png


Solution to the Königsberg Bridges Problem

Figure: The figure on the left is by Bogdan Giuşcă (License). The
figure on the right is stolen from Satish Rao’s slides.

Is the graph on the right connected, and does each vertex have
even degree?

NO.

There is no Eulerian tour!

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png#/media/File:Konigsberg_bridges.png


Solution to the Königsberg Bridges Problem

Figure: The figure on the left is by Bogdan Giuşcă (License). The
figure on the right is stolen from Satish Rao’s slides.

Is the graph on the right connected, and does each vertex have
even degree?

NO. There is no Eulerian tour!

https://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png#/media/File:Konigsberg_bridges.png


Summary

Induction:
I Definitions of total ordering and well ordering.
I Well Ordering Principle for N: The usual ordering on N is a

well ordering.
I The Well Ordering Principle is equivalent to induction.
I Green-eyed dragons: common knowledge is the key.

Graph theory:
I Definitions: Graph, vertices, edges, endpoints, incidence,

degree, neighbors, isolated vertices, connectedness,
walks, paths, tours, cycles. . .

I Handshaking Lemma
I For graphs without isolated vertices, Eulerian tours exist iff

the graph is connected and every vertex has even degree.


