Hashing (Application of Probability)

Ashwinee Panda

Final CS 70 Lecture!

9 Aug 2018

Overview

» Intro to Hashing

» Hashing with Chaining
» Hashing Performance
> Hash Families

» Balls and Bins

> Load Balancing

> Universal Hashing

> Perfect Hashing

What's the point?

Although the name of the class is “Discrete Mathematics and
Probability Theory”, what you've learned is not just theoretical but
has far-reaching applications across multiple fields. Today we’ll
dive deep into one such application: hashing.

Intro to Hashing

What's hashing?

Intro to Hashing

What's hashing?

» Distribute key/value pairs across bins with a hash function,
which maps elements from large universe U (of size n) to a
small set {0,..., k—1}

Intro to Hashing

What's hashing?

» Distribute key/value pairs across bins with a hash function,
which maps elements from large universe U (of size n) to a
small set {0,..., k—1}

» Given a key, always returns one integer

Intro to Hashing

What's hashing?

» Distribute key/value pairs across bins with a hash function,
which maps elements from large universe U (of size n) to a
small set {0,..., k—1}

» Given a key, always returns one integer

» Hashing the same key returns the same integer; h(x) = h(x)

Intro to Hashing

What's hashing?

» Distribute key/value pairs across bins with a hash function,
which maps elements from large universe U (of size n) to a
small set {0,..., k—1}

» Given a key, always returns one integer
» Hashing the same key returns the same integer; h(x) = h(x)

» Hashing two different keys might not always return different
integers

Intro to Hashing

What's hashing?

» Distribute key/value pairs across bins with a hash function,
which maps elements from large universe U (of size n) to a
small set {0,..., k—1}

» Given a key, always returns one integer
» Hashing the same key returns the same integer; h(x) = h(x)

» Hashing two different keys might not always return different
integers

» Collisions occur when h(x) = h(y) for x # y

Intro to Hashing

What's hashing?

» Distribute key/value pairs across bins with a hash function,
which maps elements from large universe U (of size n) to a
small set {0,..., k—1}

» Given a key, always returns one integer
» Hashing the same key returns the same integer; h(x) = h(x)

» Hashing two different keys might not always return different
integers

» Collisions occur when h(x) = h(y) for x # y

You may have heard of SHA256, a special class of hash function
known as a cryptographic hash function.

Hashing with Chaining

In CS 61B you learned one particular use for hashing: hash tables
with linked lists.
Pseudocode for hashing one key with a given hash function:

def hash_function(x):

return x mod 7
hash = hash_function(key)
linked_list = hash_table[hash]
linked_list.append(key)

Hashing with Chaining
In CS 61B you learned one particular use for hashing: hash tables
with linked lists.
Pseudocode for hashing one key with a given hash function:

def hash_function(x):

return x mod 7
hash = hash_function(key)
linked_list = hash_table[hash]
linked_list.append(key)

» Mapping many keys to the same index causes a COLLISION

Hashing with Chaining
In CS 61B you learned one particular use for hashing: hash tables

with linked lists.
Pseudocode for hashing one key with a given hash function:

def hash_function(x):

return x mod 7
hash = hash_function(key)
linked_list = hash_table[hash]
linked_list.append(key)

» Mapping many keys to the same index causes a COLLISION

> Resolve collisions with “chaining”

Hashing with Chaining
In CS 61B you learned one particular use for hashing: hash tables

with linked lists.
Pseudocode for hashing one key with a given hash function:

def hash_function(x):

return x mod 7
hash = hash_function(key)
linked_list = hash_table[hash]
linked_list.append(key)

» Mapping many keys to the same index causes a COLLISION
> Resolve collisions with “chaining”

» Chaining isn't perfect; we have to search through the list in
O(¢) time where ¢ is the length of the linked list

Hashing with Chaining

In CS 61B you learned one particular use for hashing: hash tables
with linked lists.
Pseudocode for hashing one key with a given hash function:

def hash_function(x):

return x mod 7
hash = hash_function(key)
linked_list = hash_table[hash]
linked_list.append(key)

» Mapping many keys to the same index causes a COLLISION
> Resolve collisions with “chaining”

» Chaining isn't perfect; we have to search through the list in
O(¢) time where ¢ is the length of the linked list

» Longer lists mean worse performance

Hashing with Chaining

In CS 61B you learned one particular use for hashing: hash tables
with linked lists.
Pseudocode for hashing one key with a given hash function:

def hash_function(x):

return x mod 7
hash = hash_function(key)
linked_list = hash_table[hash]
linked_list.append(key)

» Mapping many keys to the same index causes a COLLISION
> Resolve collisions with “chaining”

» Chaining isn't perfect; we have to search through the list in
O(¢) time where ¢ is the length of the linked list

» Longer lists mean worse performance

» Try to minimize collisions

Hashing Performance

Operation | Average-Case ‘ Worst-Case

Search 0o(1) O(n)
Insert 0(1) O(n)
Delete Oo(1) O(n)

Hashing Performance

Operation | Average-Case ‘ Worst-Case

Search 0o(1) O(n)
Insert 0(1) O(n)
Delete Oo(1) O(n)

» Hashing has great average-case performance, poor worst-case

Hashing Performance

Operation | Average-Case ‘ Worst-Case

Search 0o(1) O(n)
Insert 0(1) O(n)
Delete Oo(1) O(n)

» Hashing has great average-case performance, poor worst-case

» Worst-case is when all keys map to the same bin (collisions);
performance scales as maximum number of keys in a bin

Hashing Performance

Operation | Average-Case ‘ Worst-Case

Search 0o(1) O(n)
Insert 0(1) O(n)
Delete Oo(1) O(n)

» Hashing has great average-case performance, poor worst-case

» Worst-case is when all keys map to the same bin (collisions);
performance scales as maximum number of keys in a bin

An adversary can induce the worst case (adversarial attack)

Hashing Performance

Operation | Average-Case ‘ Worst-Case

Search 0o(1) O(n)
Insert 0(1) O(n)
Delete Oo(1) O(n)

» Hashing has great average-case performance, poor worst-case

» Worst-case is when all keys map to the same bin (collisions);
performance scales as maximum number of keys in a bin

An adversary can induce the worst case (adversarial attack)

» For h(x) = x mod 7, suppose our set of keys is all multiples
of 7!

Hashing Performance

Operation | Average-Case ‘ Worst-Case

Search 0o(1) O(n)
Insert 0(1) O(n)
Delete Oo(1) O(n)

» Hashing has great average-case performance, poor worst-case

» Worst-case is when all keys map to the same bin (collisions);
performance scales as maximum number of keys in a bin

An adversary can induce the worst case (adversarial attack)

» For h(x) = x mod 7, suppose our set of keys is all multiples
of 7!

» Each item will hash to the same bin

Hashing Performance

Operation | Average-Case ‘ Worst-Case

Search 0o(1) O(n)
Insert 0(1) O(n)
Delete Oo(1) O(n)

» Hashing has great average-case performance, poor worst-case

» Worst-case is when all keys map to the same bin (collisions);
performance scales as maximum number of keys in a bin

An adversary can induce the worst case (adversarial attack)

» For h(x) = x mod 7, suppose our set of keys is all multiples
of 7!

» Each item will hash to the same bin

» To do any operation, we'll have to go through the entire
linked list

Hash Families

» If [U > (n— 1)k + 1 then the Pigeonhole Principle says one
bucket of the hash function must contain at least n items

Hash Families

» If [U > (n— 1)k + 1 then the Pigeonhole Principle says one
bucket of the hash function must contain at least n items

» For any hash function, we might have keys that all map to the
same bin—then our hash table will have terrible performance!

Hash Families
» If [U > (n— 1)k + 1 then the Pigeonhole Principle says one
bucket of the hash function must contain at least n items

» For any hash function, we might have keys that all map to the
same bin—then our hash table will have terrible performance!

» Seems hard to pick just one hash function to avoid worst-case

Hash Families
» If [U > (n— 1)k + 1 then the Pigeonhole Principle says one
bucket of the hash function must contain at least n items

» For any hash function, we might have keys that all map to the
same bin—then our hash table will have terrible performance!

» Seems hard to pick just one hash function to avoid worst-case
» Instead, develop randomized algorithm!

Hash Families

>

If U > (n— 1)k + 1 then the Pigeonhole Principle says one
bucket of the hash function must contain at least n items

For any hash function, we might have keys that all map to the
same bin—then our hash table will have terrible performance!

Seems hard to pick just one hash function to avoid worst-case
Instead, develop randomized algorithm!
Randomized algorithms use randomness to make decisions

Hash Families

>

vV v v v

If U > (n— 1)k + 1 then the Pigeonhole Principle says one
bucket of the hash function must contain at least n items

For any hash function, we might have keys that all map to the
same bin—then our hash table will have terrible performance!

Seems hard to pick just one hash function to avoid worst-case
Instead, develop randomized algorithm!
Randomized algorithms use randomness to make decisions

Quicksort expects to find the right answer in O(nlog n) time
but may run for O(n?) time (CS 61B)

Hash Families

>

vV v v v

If U > (n— 1)k + 1 then the Pigeonhole Principle says one
bucket of the hash function must contain at least n items

For any hash function, we might have keys that all map to the
same bin—then our hash table will have terrible performance!

Seems hard to pick just one hash function to avoid worst-case
Instead, develop randomized algorithm!

Randomized algorithms use randomness to make decisions
Quicksort expects to find the right answer in O(nlog n) time
but may run for O(n?) time (CS 61B)

We can restart a randomized algorithm as many times as we
wish, to make the P[fail] arbitrarily low

Hash Families

>

vV v v v

If U > (n— 1)k + 1 then the Pigeonhole Principle says one
bucket of the hash function must contain at least n items

For any hash function, we might have keys that all map to the
same bin—then our hash table will have terrible performance!

Seems hard to pick just one hash function to avoid worst-case
Instead, develop randomized algorithm!

Randomized algorithms use randomness to make decisions
Quicksort expects to find the right answer in O(nlog n) time
but may run for O(n?) time (CS 61B)

We can restart a randomized algorithm as many times as we
wish, to make the P[fail] arbitrarily low

To guard against an adversary we generate a hash function h
uniformly at random from a hash family H

Hash Families

» If [U > (n— 1)k + 1 then the Pigeonhole Principle says one
bucket of the hash function must contain at least n items

» For any hash function, we might have keys that all map to the
same bin—then our hash table will have terrible performance!

Seems hard to pick just one hash function to avoid worst-case
Instead, develop randomized algorithm!
Randomized algorithms use randomness to make decisions

vV v v v

Quicksort expects to find the right answer in O(nlog n) time

but may run for O(n?) time (CS 61B)

» We can restart a randomized algorithm as many times as we
wish, to make the P[fail] arbitrarily low

» To guard against an adversary we generate a hash function h
uniformly at random from a hash family H

» Even if the keys are chosen by an adversary, no adversary can

choose bad keys for the entire family simultaneously, so our

scheme will work with high probability

Balls and Bins

» If we want to be REALLY random, we'd see hashing as just
balls and bins

Balls and Bins

» If we want to be REALLY random, we'd see hashing as just
balls and bins

» Specifically, suppose that the random variables h(x) as x
ranges over U are independent

Balls and Bins

» If we want to be REALLY random, we'd see hashing as just
balls and bins

» Specifically, suppose that the random variables h(x) as x
ranges over U are independent

» Balls will be the keys to be stored

Balls and Bins

» If we want to be REALLY random, we'd see hashing as just
balls and bins

» Specifically, suppose that the random variables h(x) as x
ranges over U are independent

» Balls will be the keys to be stored

» Bins will be the k locations in hash table

Balls and Bins

» If we want to be REALLY random, we'd see hashing as just
balls and bins

» Specifically, suppose that the random variables h(x) as x
ranges over U are independent

» Balls will be the keys to be stored
» Bins will be the k locations in hash table

» The hash function maps each key to a uniformly random
location

Balls and Bins

» If we want to be REALLY random, we'd see hashing as just
balls and bins

» Specifically, suppose that the random variables h(x) as x
ranges over U are independent

» Balls will be the keys to be stored
» Bins will be the k locations in hash table

» The hash function maps each key to a uniformly random
location

» Each key (ball) chooses a bin uniformly and independently

Balls and Bins

» If we want to be REALLY random, we'd see hashing as just
balls and bins

» Specifically, suppose that the random variables h(x) as x
ranges over U are independent

» Balls will be the keys to be stored
» Bins will be the k locations in hash table

» The hash function maps each key to a uniformly random
location

» Each key (ball) chooses a bin uniformly and independently

» How likely can collisions be? The probability that two balls
fall into same bin is %

Balls and Bins

» If we want to be REALLY random, we'd see hashing as just
balls and bins

» Specifically, suppose that the random variables h(x) as x
ranges over U are independent

» Balls will be the keys to be stored
» Bins will be the k locations in hash table

» The hash function maps each key to a uniformly random
location

» Each key (ball) chooses a bin uniformly and independently

» How likely can collisions be? The probability that two balls
fall into same bin is %

» Birthday Paradox: 23 balls and 365 bins = 50% chance of
collision!

Balls and Bins

v

If we want to be REALLY random, we'd see hashing as just
balls and bins

Specifically, suppose that the random variables h(x) as x
ranges over U are independent

Balls will be the keys to be stored
Bins will be the k locations in hash table

The hash function maps each key to a uniformly random
location

Each key (ball) chooses a bin uniformly and independently

How likely can collisions be? The probability that two balls
fall into same bin is %

Birthday Paradox: 23 balls and 365 bins = 50% chance of
collision!

n>vVk = % chance of collision

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1

> E[X] =P[X; =1] =

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1

> E[X] =P[X; =1] =
> E[X] = ¢

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1

» EX] =PX;=1] =1
E; is the indicator variable that bin / is empty

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1

» EX]=PX;=1] =1
» E[X] =1
E; is the indicator variable that bin / is empty
» Using the complement of X; we find P[E;] = (1 — %)"

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1

» EX]=PX;=1] =1
» E[X] =1
E; is the indicator variable that bin / is empty
» Using the complement of X; we find P[E;] = (1 — %)"

E is the number of empty locations

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1

» EX]=PX;=1] =1

~ E[X] =
E; is the indicator variable that bin / is empty

» Using the complement of X; we find P[E;] = (1 — %)"
E is the number of empty locations

> E[E] = k(1 - })"

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1

» EX]=PX;=1] =1

~ E[X] =
E; is the indicator variable that bin / is empty

» Using the complement of X; we find P[E;] = (1 — %)"
E is the number of empty locations

> E[E] = k(1 - 1)"

» k=n = E[E]:n(l—%)nzgandE[X]:%

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1
> E[X] =P[X; =1] =
» EIX] =
E; is the indicator variable that bin / is empty
» Using the complement of X; we find P[E;] = (1 —)"
E is the number of empty locations
» E[E] = k(1 - 1)"
» k=n = E[E] = n(—%)nzgandE[X]:%
» How can we expect 1 item per location (very intuitive with n

balls and n bins) and also expect more than a third of
locations to be empty?

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1
> E[X] =P[X; =1] =
» EIX] =
E; is the indicator variable that bin / is empty
» Using the complement of X; we find P[E;] = (1 —)"
E is the number of empty locations
» E[E] = k(1 - 1)"
» k=n = E[E] = n(—%)nzgandE[X]:%
» How can we expect 1 item per location (very intuitive with n

balls and n bins) and also expect more than a third of
locations to be empty?

C is the number of bins with > 2 balls

Balls and Bins

X; is the indicator random variable which turns on if the /t" ball
falls into bin 1 and X is the number of balls that fall into bin 1
> E[X] =P[X; =1] =
» EIX] =
E; is the indicator variable that bin / is empty
» Using the complement of X; we find P[E;] = (1 —)"
E is the number of empty locations
» E[E] = k(1 - 1)"
» k=n = E[E] = n(—%)nzgandE[X]:%
» How can we expect 1 item per location (very intuitive with n

balls and n bins) and also expect more than a third of
locations to be empty?

C is the number of bins with > 2 balls

Load Balancing

» Distributed computing: evenly distribute a workload

Load Balancing

» Distributed computing: evenly distribute a workload

» m identical jobs, n identical processors (may not be identical
but that won't actually matter)

Load Balancing

» Distributed computing: evenly distribute a workload

» m identical jobs, n identical processors (may not be identical
but that won't actually matter)

> Ideally we should distribute these perfectly evenly so each
processor gets * jobs

Load Balancing

» Distributed computing: evenly distribute a workload

» m identical jobs, n identical processors (may not be identical
but that won't actually matter)

> Ideally we should distribute these perfectly evenly so each
processor gets * jobs

» Centralized systems are capable of this, but centralized
systems require a server to exert a degree of control that is
often impractical

Load Balancing

» Distributed computing: evenly distribute a workload

» m identical jobs, n identical processors (may not be identical
but that won't actually matter)

> Ideally we should distribute these perfectly evenly so each
processor gets * jobs

» Centralized systems are capable of this, but centralized
systems require a server to exert a degree of control that is
often impractical

» This is actually similar to balls and bins!

Load Balancing

» Distributed computing: evenly distribute a workload

» m identical jobs, n identical processors (may not be identical
but that won't actually matter)

> Ideally we should distribute these perfectly evenly so each
processor gets * jobs

» Centralized systems are capable of this, but centralized
systems require a server to exert a degree of control that is
often impractical

» This is actually similar to balls and bins!

> Let's continue using our random algorithm of hashing

Load Balancing

» Distributed computing: evenly distribute a workload

» m identical jobs, n identical processors (may not be identical
but that won't actually matter)

> Ideally we should distribute these perfectly evenly so each
processor gets * jobs

» Centralized systems are capable of this, but centralized
systems require a server to exert a degree of control that is
often impractical

» This is actually similar to balls and bins!
> Let's continue using our random algorithm of hashing

> Let’s try to derive an upper bound for the maximum length,
assuming m=n

Load Balancing

H; : is the event that t keys hash to bin i

Load Balancing

H; : is the event that t keys hash to bin i
> PlH] = (D)1 -2)""

Load Balancing

H; : is the event that t keys hash to bin i

> PlHid = ()(3)(L - l)H

> Approximation: (';) < by Stirling’s formula

tt(n— t)" t

Load Balancing

H; : is the event that t keys hash to bin i
t —t
> P[H] = (D(3)(1-3)"
» Approximation: (';) < W by Stirling’s formula

» Approximation: Vx > 0, (1 ;)X < e by the limit

Load Balancing

H; : is the event that t keys hash to bin i

> PlHid = ()(3)(L - l)H

> Approximation: (}) < W

» Approximation: Vx > 0, (1 ;)X < e by the limit

by Stirling’s formula

n—t

» Because (1—1)""" <1 and (%)t = L we can simplify

Load Balancing

H; : is the event that t keys hash to bin i

> PlHid = ()(3)(L - l)H

> Approximation: (';) < by Stirling’s formula

tt(n— t)" t
» Approximation: Vx > 0, (1 ;)X < e by the limit
» Because (1 — %)n_t <1and (%)t = L we can simplify

1\t 1y\n—t n o n—t
> (D@ =2 < wtmw = g™

_ 1 t \n—t _ 1 £ ¢
=#(l+:5) =z((0+5)) <%
M;: event that max list length hashing n items to n bins is t
M; +: event that max list length is t, and this list is in bin /

Load Balancing

H; : is the event that t keys hash to bin i

> PlHid = ()(3)(L - l)H

Approximation: (7) <

v

W by Stirling’s formula

Approximation: ¥x > 0, (1 ;)X < e by the limit

v

v

Because (1 — %)n_t <1and (%)t = L we can simplify
1\t 1\n—t n - n—t
(DG Q=27 < st = momg—

v

_ 1 t \n—t _ 1 £ ¢
=#(l+:5) =z((0+5)) <%
M;: event that max list length hashing n items to n bins is t
M; +: event that max list length is t, and this list is in bin /

> P[Mi] = P[UiL; Mie] < D07 P[Mie] < 300 PIHix]

Load Balancing

H; : is the event that t keys hash to bin i

> PlHid = ()(3)(L - l)H

Approximation: (7) <

v

W by Stirling’s formula

Approximation: ¥x > 0, (1 ;)X < e by the limit

v

v

Because (1 — %)n_t <1and (%)t = L we can simplify
1\t 1\n—t n - n—t
(DG Q=27 < st = momg—

v

_ 1 t \n—t _ 1 £ ¢
=#(l+:5) =z((0+5)) <%
M;: event that max list length hashing n items to n bins is t
M; +: event that max list length is t, and this list is in bin /

> P[Me] = PIULy Miie] < 3271 PIMie] < 300 PHie]
» ldentically distributed loads means " ; P[H;] = nP[H;]

Load Balancing

H; : is the event that t keys hash to bin i

> PlHid = ()(3)(L - l)H

Approximation: (7) <

v

W by Stirling’s formula

Approximation: ¥x > 0, (1 ;)X < e by the limit

v

v

Because (1 — %)n_t <1and (%)t = L we can simplify
1\t 1\n—t n - n—t
(DG Q=27 < st = momg—

v

_ 1 t \n—t _ 1 £ ¢
=#(l+:5) =z((0+5)) <%
M;: event that max list length hashing n items to n bins is t
M; +: event that max list length is t, and this list is in bin /

> P[Me] = PIULy Miie] < 3271 PIMie] < 300 PHie]
» ldentically distributed loads means " ; P[H;] = nP[H;]

The probability that the max list length is t is at most n(£)*

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn

> S tPIM] = Y tP[Me] + 30 tP[M]

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn
> S tPIM] = Y tP[Me] + 30 tP[M]

Sum over smaller values:

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn
> S tPIM] = Y tP[Me] + 30 tP[M]

Sum over smaller values:

» Replace t with the upper bound of 5

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn
> S tPIM] = Y tP[Me] + 30 tP[M]

Sum over smaller values:

» Replace t with the upper bound of 5

> YL tPIM] < S BEIM] = B30 MY < 8
as the sum of disjoint probabilities is bounded by 1

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn
> S tPIM] = Y tP[Me] + 30 tP[M]

Sum over smaller values:

» Replace t with the upper bound of 5
> Sy tF[M] < ST GPIME = B30 PM] < 8
as the sum of disjoint probabilities is bounded by 1

Sum over larger values:

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn
> S tPIM] = Y tP[Me] + 30 tP[M]

Sum over smaller values:

» Replace t with the upper bound of 5
> Sy tF[M] < ST GPIME = B30 PM] < 8
as the sum of disjoint probabilities is bounded by 1
Sum over larger values:

> Use our expression for P[H; ;] and see that P[M;] < .

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn
> S tPIM] = Y tP[Me] + 30 tP[M]

Sum over smaller values:

» Replace t with the upper bound of 5
> Y1 tPIM] < 3L BB[M:] = B0 PIM] <
as the sum of disjoint probabilities is bounded by 1
Sum over larger values:
> Use our expression for P[H; ;] and see that P[M;] < .

» Since this bound decreases as t grows, and t < n:

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn
> S tPIM] = Y tP[Me] + 30 tP[M]

Sum over smaller values:

» Replace t with the upper bound of 5
> Y1 tPIM] < 3L BB[M:] = B0 PIM] <
as the sum of disjoint probabilities is bounded by 1
Sum over larger values:
> Use our expression for P[H; ;] and see that P[M;] < .

» Since this bound decreases as t grows, and t < n:
> g tPM] <Yl gny <355 <1

Load Balancing

Expected max load is Y _;_; tP[M;] where P[M,] < n(2)"

» Split sum into two parts and bound each part separately.
» f =227 How did we get this? Take a look at Note 15.

Inlnn
> S tPIM] = Y tP[Me] + 30 tP[M]

Sum over smaller values:

» Replace t with the upper bound of 5
> S tP[M] < 00 BB[M] = B0 P[M:] <
as the sum of disjoint probabilities is bounded by 1
Sum over larger values:
> Use our expression for P[H; ;] and see that P[M;] < .
» Since this bound decreases as t grows, and t < n:
> g tPIM] < Yp gy <305 <1
» Expected max load is O(3) = O("2)

Inlnn

Universal Hashing

What we've been working with so far is “k-wise independent”
hashing or fully independent hashing.

Universal Hashing

What we've been working with so far is “k-wise independent”
hashing or fully independent hashing.

» For any number of balls k, the probability that they fall into

the same bin of n bins is #

Universal Hashing

What we've been working with so far is “k-wise independent”
hashing or fully independent hashing.

» For any number of balls k, the probability that they fall into

the same bin of n bins is #

> Very strong requirement!

Universal Hashing

What we've been working with so far is “k-wise independent”
hashing or fully independent hashing.

» For any number of balls k, the probability that they fall into

the same bin of n bins is #

> Very strong requirement!

» Fully independent hash functions require a large number of
bits to store

Universal Hashing

What we've been working with so far is “k-wise independent”
hashing or fully independent hashing.

» For any number of balls k, the probability that they fall into

the same bin of n bins is #

> Very strong requirement!
» Fully independent hash functions require a large number of
bits to store

Do we compromise, and make our worst case worse so we can have
more space?

Universal Hashing

What we've been working with so far is “k-wise independent”
hashing or fully independent hashing.

» For any number of balls k, the probability that they fall into

the same bin of n bins is #

» Very strong requirement!
» Fully independent hash functions require a large number of
bits to store
Do we compromise, and make our worst case worse so we can have
more space?

» Often you do have to sacrifice time for space, vice-versa

Universal Hashing

What we've been working with so far is “k-wise independent”
hashing or fully independent hashing.

» For any number of balls k, the probability that they fall into

the same bin of n bins is #

> Very strong requirement!
» Fully independent hash functions require a large number of
bits to store
Do we compromise, and make our worst case worse so we can have
more space?
» Often you do have to sacrifice time for space, vice-versa

» But not this time! Let's inspect our worst-case

Universal Hashing

What we've been working with so far is “k-wise independent”
hashing or fully independent hashing.

» For any number of balls k, the probability that they fall into

the same bin of n bins is #

» Very strong requirement!
» Fully independent hash functions require a large number of
bits to store
Do we compromise, and make our worst case worse so we can have
more space?
» Often you do have to sacrifice time for space, vice-versa
» But not this time! Let's inspect our worst-case

» Collisions only care about two balls colliding

Universal Hashing

What we've been working with so far is “k-wise independent”
hashing or fully independent hashing.

» For any number of balls k, the probability that they fall into

the same bin of n bins is #

> Very strong requirement!
» Fully independent hash functions require a large number of
bits to store

Do we compromise, and make our worst case worse so we can have
more space?

» Often you do have to sacrifice time for space, vice-versa

» But not this time! Let's inspect our worst-case

» Collisions only care about two balls colliding

We don’t need “k-wise independence” we only need “2-wise
independence”

Universal Hashing

Definition of Universal Hashing
» We say H is 2-universal if Vx # y € U, P[h(x) = h(y)]

<

X-[=

Universal Hashing

Definition of Universal Hashing
> We say H is 2-universal if Vx # y € U, P[h(x) = h(y)] < &

> Let Cx be the number of collisions with item x, and C , be
the indicator that items x and y collide

Universal Hashing

Definition of Universal Hashing
> We say H is 2-universal if Vx # y € U, P[h(x) = h(y)] < &

> Let Cx be the number of collisions with item x, and C , be
the indicator that items x and y collide

» This implies E[Cy] = ZyGTU\{X} E[lCxy] < § =«

Universal Hashing

Definition of Universal Hashing
> We say H is 2-universal if Vx # y € U, P[h(x) = h(y)] < &

> Let Cx be the number of collisions with item x, and C , be
the indicator that items x and y collide

» This |mp|les E[CX] = ZyGU\{X} E[ijy] < % =«
» « is called the “load factor”

Universal Hashing

Definition of Universal Hashing
> We say H is 2-universal if Vx # y € U, P[h(x) = h(y)] < &

> Let Cx be the number of collisions with item x, and C , be
the indicator that items x and y collide

» This |mp|les E[CX] = ZyGU\{X} E[ijy] < % =«
» « is called the “load factor”

If we can construct such an H then we'll expect constant-time
operations. . . pretty cool!

Universal Hashing

Defining hashing scheme

Universal Hashing

Defining hashing scheme

» Our universe has size n and our hash table has size k

Universal Hashing

Defining hashing scheme
» Our universe has size n and our hash table has size k

>Saykisprimeandn:k’.VXEU:X:[xl Xp - x,]

Universal Hashing

Defining hashing scheme
» Qur universe has size n and our hash table has size k
» Say kisprimeand n=k". Yx e U: x = [xl Xp - x,]
> Represent our key as a vector [x; x» --- x| s.t. forall i,
x;i €{0,...,k—1}

Universal Hashing

Defining hashing scheme

» Our universe has size n and our hash table has size k

»Saykisprimeandn:k’.Ver:x:[xl Xo - x,]

> Represent our key as a vector [x; x» --- x| s.t. forall i,
x;i €{0,...,k—1}

» Choose n-length random vector V = [vl Vo o vr] from

{0,...,k —1}" and take dot product

Universal Hashing

Defining hashing scheme

» Our universe has size n and our hash table has size k

»Saykisprimeandn:k’.Ver:x:[xl Xo - x,]

> Represent our key as a vector [x; x» --- x| s.t. forall i,
x;i €{0,...,k—1}

» Choose n-length random vector V = [vl Vo o vr] from

{0,...,k —1}" and take dot product

Proving universality

Universal Hashing

Defining hashing scheme

» Our universe has size n and our hash table has size k

»Saykisprimeandn:k’.Ver:x:[xl Xo - x,]

> Represent our key as a vector [x; x» --- x| s.t. forall i,
x;i €{0,...,k—1}

» Choose n-length random vector V = [vl Vo o vr] from

{0,...,k —1}" and take dot product
Proving universality

» x £y = 3i:x; # y; (at least one index different)

Universal Hashing

Defining hashing scheme

» Our universe has size n and our hash table has size k

»Saykisprimeandn:k’.Ver:x:[xl Xo - x,]

> Represent our key as a vector [x; x» --- x| s.t. forall i,
x;i €{0,...,k—1}

» Choose n-length random vector V = [vl Vo o vr] from

{0,...,k —1}" and take dot product
Proving universality
» x £y = 3i:x; # y; (at least one index different)
> Plh(x) = h(y)] = B[S, vixi = Y7y vivi)
=Plvi(xi — yi) = Ej;éi ViYj — Zj;éi vjxj

Universal Hashing

Defining hashing scheme

» Our universe has size n and our hash table has size k

»Saykisprimeandn:k’.Ver:x:[xl Xo - x,]

> Represent our key as a vector [x; x» --- x| s.t. forall i,
x;i €{0,...,k—1}

» Choose n-length random vector V = [vl Vo o vr] from

{0,...,k —1}" and take dot product
Proving universality
» x £y = 3i:x; # y; (at least one index different)
> Plh(x) = h(y)] = B[S, vixi = Y7y vivi)
=Plvi(xi — yi) = Ej;éi ViYj — Zj;éi vjxj
> Xx; — y; has an inverse modulo k

Universal Hashing

Defining hashing scheme

» Our universe has size n and our hash table has size k

»Saykisprimeandn:k’.Ver:x:[xl Xo - x,]

> Represent our key as a vector [x; x» --- x| s.t. forall i,
x;i €{0,...,k—1}

» Choose n-length random vector V = [vl Vo o vr] from

{0,...,k —1}" and take dot product
Proving universality
» x £y = 3i:x; # y; (at least one index different)
> Plh(x) = h(y)] = B[S, vixi = Y7y vivi)
=Plvi(xi — yi) = Ej;éi ViYj — Zj;éi vjxj
> Xx; — y; has an inverse modulo k

P[L 2t iYi T D Vij] _1
Vi = Xi—Yi Tk

Universal Hashing

Defining hashing scheme

» Our universe has size n and our hash table has size k

»Saykisprimeandn:k’.Ver:x:[xl Xo - x,]

> Represent our key as a vector [x; x» --- x| s.t. forall i,
x;i €{0,...,k—1}

» Choose n-length random vector V = [vl Vo o vr] from

{0,...,k —1}" and take dot product
Proving universality
» x £y = 3i:x; # y; (at least one index different)
> Plh(x) = h(y)] = B[S, vixi = Y7y vivi)
=Plvi(xi — yi) = Ej;éi ViYj — Zj;éi vjxj
> Xx; — y; has an inverse modulo k

VY= vix
P[V,' — Zj;él Y Zﬁé, J J] — 1

>
Xi—Yi k

There are lots of universal hash families; this is just one!

Static Hashing

The dictionary problem (static):

Static Hashing

The dictionary problem (static):

» Store a set of items, each is a (key, value) pair

Static Hashing

The dictionary problem (static):
» Store a set of items, each is a (key, value) pair

» The number of items we store will be roughly the same size as
the hash table (i.e., we want to store = k items)

Static Hashing

The dictionary problem (static):
» Store a set of items, each is a (key, value) pair

» The number of items we store will be roughly the same size as
the hash table (i.e., we want to store = k items)

» Support only one operation: search

Static Hashing

The dictionary problem (static):
» Store a set of items, each is a (key, value) pair

» The number of items we store will be roughly the same size as
the hash table (i.e., we want to store = k items)

v

Support only one operation: search

v

Binary search trees: search typically takes O(log k) time

Static Hashing

The dictionary problem (static):
» Store a set of items, each is a (key, value) pair

» The number of items we store will be roughly the same size as
the hash table (i.e., we want to store = k items)

» Support only one operation: search
» Binary search trees: search typically takes O(log k) time
» Hash table: search takes O(1) time

Static Hashing

The dictionary problem (static):

>

>

Store a set of items, each is a (key, value) pair

The number of items we store will be roughly the same size as
the hash table (i.e., we want to store = k items)

Support only one operation: search
Binary search trees: search typically takes O(log k) time
Hash table: search takes O(1) time

Distinct from the dynamic dictionary problem

Perfect Hashing for Static Dictionaries

h is perfect for a given set of keys if all lookups are O(1)

'Fredman, Kolmés, Szemerédi

Perfect Hashing for Static Dictionaries

h is perfect for a given set of keys if all lookups are O(1)

» Hash into table A of size k with universal hashing

'Fredman, Kolmés, Szemerédi

Perfect Hashing for Static Dictionaries

h is perfect for a given set of keys if all lookups are O(1)

» Hash into table A of size k with universal hashing

» We'll end up with some collisions

'Fredman, Kolmés, Szemerédi

Perfect Hashing for Static Dictionaries

h is perfect for a given set of keys if all lookups are O(1)

» Hash into table A of size k with universal hashing
» We'll end up with some collisions

» Rehash each bin with a new hash function for each bin

'Fredman, Kolmés, Szemerédi

Perfect Hashing for Static Dictionaries

h is perfect for a given set of keys if all lookups are O(1)

» Hash into table A of size k with universal hashing
» We'll end up with some collisions
» Rehash each bin with a new hash function for each bin

> This “second-layer” bin should have 0 collisions with high
probability. . . how?

'Fredman, Kolmés, Szemerédi

Perfect Hashing for Static Dictionaries

h is perfect for a given set of keys if all lookups are O(1)

>

>

v

v

v

Hash into table A of size k with universal hashing

We'll end up with some collisions

Rehash each bin with a new hash function for each bin
This “second-layer” bin should have 0 collisions with high
probability. . . how?

If we hash n items to n? buckets,
ECl<(3)m<3 = PlC=0]<;

'Fredman, Kolmés, Szemerédi

Perfect Hashing for Static Dictionaries

h is perfect for a given set of keys if all lookups are O(1)

>

>

>

Hash into table A of size k with universal hashing

We'll end up with some collisions

Rehash each bin with a new hash function for each bin
This “second-layer” bin should have 0 collisions with high
probability. . . how?

If we hash n items to n? buckets,

B < ()b <} — PC>0<}
If the i*" entry of A has b; items, then the second-layer hash

table of the /™" entry has size b?

'Fredman, Kolmés, Szemerédi

Perfect Hashing for Static Dictionaries

h is perfect for a given set of keys if all lookups are O(1)

>

>

>

Hash into table A of size k with universal hashing

We'll end up with some collisions

Rehash each bin with a new hash function for each bin
This “second-layer” bin should have 0 collisions with high
probability. . . how?

If we hash n items to n? buckets,

ECl< (e <3 = PC>0]<3
If the i*" entry of A has b; items, then the second-layer hash

table of the /™" entry has size b?

This is the FKS! scheme for perfect hashing for the static
dictionary problem.

'Fredman, Kolmés, Szemerédi

Analysis of FKS Hashing

» Total size of data structure is O(k) (for the first hash table)
plus Zf'(:l b? (for the second-layer hash tables) plus the cost
to store the hash functions

Analysis of FKS Hashing

» Total size of data structure is O(k) (for the first hash table)
plus Zf'(:l b? (for the second-layer hash tables) plus the cost
to store the hash functions

» As we want to save space, we'd like 5, b? € O(k)

Analysis of FKS Hashing

» Total size of data structure is O(k) (for the first hash table)
plus Zf'(:l b? (for the second-layer hash tables) plus the cost
to store the hash functions

» As we want to save space, we'd like 5, b? € O(k)
» 3K b2 =2-C+ > | b because
C=3in(3) =355 b7 — 3 5 bi

Analysis of FKS Hashing

v

Total size of data structure is O(k) (for the first hash table)
plus Zf'(:l b? (for the second-layer hash tables) plus the cost
to store the hash functions

» As we want to save space, we'd like 5, b? € O(k)
Zf.‘zl b?=2-C+ Zf-‘zl b; because

C= Zf:l (gi) - %Zle b7 — 3 f'(:1 bi

E[Y1, 6] < 2B[C] + k = 2(5) § + k < 2k

v

v

Analysis of FKS Hashing

» Total size of data structure is O(k) (for the first hash table)
plus Zf'(:l b? (for the second-layer hash tables) plus the cost
to store the hash functions

» As we want to save space, we'd like 5, b? € O(k)
» 3K b2 =2-C+ > | b because

=% (gi) - %Zle b7 — 3 1 b
> B[S0, 2] <2E[C] + k= 2(5) L + k <2k

» Overall space is O(k). To search, compute i = h(x) and find
key in A,'[h,'(X)]

Summary

» Described a single hash function mapping from universe to
bins and saw how it was implemented in CS 61B

» Secured ourselves against adversaries by choosing hash
functions randomly from a family

» Drew analogy from balls and bins to “fully independent
hashing” to understand collisions

» Compared the load balancing problem to hashing and found a
bound for the length of the longest list and therefore an O(+)
expression for the expected worst-case performance.

» To conserve space while maintaining collision resistance, we
designed a universal hash family

» Armed with all this we made the FKS “perfect hashing’
scheme for static dictionaries where even the worst-case
lookup is constant!

	Introduction
	Some LaTeX Examples

