Hashing (Application of Probability)
Ashwinee Panda
Final CS 70 Lecture!
9 Aug 2018

Hashing with Chaining

In CS 61B you learned one particular use for hashing: hash tables with linked lists.
Pseudocode for hashing one key with a given hash function:
def hash_function(x)
return $x \bmod 7$
hash = hash_function(key)
linked_list = hash_table[hash]
linked_list.append(key)

- Mapping many keys to the same index causes a COLLISION
- Resolve collisions with "chaining"
- Chaining isn't perfect; we have to search through the list in $O(\ell)$ time where ℓ is the length of the linked list
- Longer lists mean worse performance
- Try to minimize collisions

Overview

- Intro to Hashing
- Hashing with Chaining
- Hashing Performance
- Hash Families
- Balls and Bins
- Load Balancing
- Universal Hashing
- Perfect Hashing

What's the point?
Although the name of the class is "Discrete Mathematics and Probability Theory", what you've learned is not just theoretical but has far-reaching applications across multiple fields. Today we'll dive deep into one such application: hashing

Hashing Performance

Operation	Average-Case	Worst-Case
Search	$O(1)$	$O(n)$
Insert	$O(1)$	$O(n)$
Delete	$O(1)$	$O(n)$

- Hashing has great average-case performance, poor worst-case
- Worst-case is when all keys map to the same bin (collisions); performance scales as maximum number of keys in a bin
An adversary can induce the worst case (adversarial attack)
- For $h(x)=x \bmod 7$, suppose our set of keys is all multiples of 7 !
- Each item will hash to the same bin
- To do any operation, we'll have to go through the entire linked list

Intro to Hashing

What's hashing?

- Distribute key/value pairs across bins with a hash function, which maps elements from large universe \mathbb{U} (of size n) to a small set $\{0, \ldots, k-1\}$
- Given a key, always returns one integer
- Hashing the same key returns the same integer; $h(x)=h(x)$
- Hashing two different keys might not always return different integers
- Collisions occur when $h(x)=h(y)$ for $x \neq y$

You may have heard of SHA256, a special class of hash function known as a cryptographic hash function.

Hash Families

- If $|\mathbb{U}| \geq(n-1) k+1$ then the Pigeonhole Principle says one bucket of the hash function must contain at least n items
- For any hash function, we might have keys that all map to the same bin-then our hash table will have terrible performance!
- Seems hard to pick just one hash function to avoid worst-case
- Instead, develop randomized algorithm!
- Randomized algorithms use randomness to make decisions
- Quicksort expects to find the right answer in $O(n \log n)$ time but may run for $O\left(n^{2}\right)$ time (CS 61B)
- We can restart a randomized algorithm as many times as we wish, to make the $\mathbb{P}[f a i l]$ arbitrarily low
- To guard against an adversary we generate a hash function h uniformly at random from a hash family \mathcal{H}
- Even if the keys are chosen by an adversary, no adversary can choose bad keys for the entire family simultaneously, so our scheme will work with high probability

Balls and Bins

- If we want to be Really random, we'd see hashing as just balls and bins
- Specifically, suppose that the random variables $h(x)$ as x ranges over \mathbb{U} are independent
- Balls will be the keys to be stored
- Bins will be the k locations in hash table
- The hash function maps each key to a uniformly random location
- Each key (ball) chooses a bin uniformly and independently
- How likely can collisions be? The probability that two balls fall into same bin is $\frac{1}{k^{2}}$
- Birthday Paradox: 23 balls and 365 bins $\Longrightarrow 50 \%$ chance of collision!
- $n \geq \sqrt{k} \Longrightarrow \frac{1}{2}$ chance of collision

Load Balancing

$H_{i, t}$ is the event that t keys hash to bin i

- $\mathbb{P}\left[H_{i, t}\right]=\binom{n}{t}\left(\frac{1}{n}\right)^{t}\left(1-\frac{1}{n}\right)^{n-t}$
- Approximation: $\binom{n}{t} \leq \frac{n^{n}}{t^{t}(n-t)^{n-t}}$ by Stirling's formula
- Approximation: $\forall x>0,\left(1+\frac{1}{x}\right)^{x} \leq e$ by the limit
- Because $\left(1-\frac{1}{n}\right)^{n-t} \leq 1$ and $\left(\frac{1}{n}\right)^{t}=\frac{1}{n^{t}}$ we can simplify
- $\binom{n}{t}\left(\frac{1}{n}\right)^{t}\left(1-\frac{1}{n}\right)^{n-t} \leq \frac{n^{n}}{t^{t}(n-t)^{n-t} n^{t}}=\frac{n^{n-t}}{t^{t}(n-t)^{n-t}}$
$=\frac{1}{t^{t}}\left(1+\frac{t}{n-t}\right)^{n-t}=\frac{1}{t^{t}}\left(\left(1+\frac{t}{n-t}\right)^{\frac{n-t}{t}}\right)^{t} \leq \frac{e^{t}}{t^{t}}$
M_{t} : event that max list length hashing n items to n bins is t
$M_{i, t}$: event that max list length is t, and this list is in bin i
- $\mathbb{P}\left[M_{t}\right]=\mathbb{P}\left[\bigcup_{i=1}^{n} M_{i, t}\right] \leq \sum_{i=1}^{n} \mathbb{P}\left[M_{i, t}\right] \leq \sum_{i=1}^{n} \mathbb{P}\left[H_{i, t}\right]$
- Identically distributed loads means $\sum_{i=1}^{n} \mathbb{P}\left[H_{i, t}\right]=n \mathbb{P}\left[H_{i, t}\right]$

The probability that the max list length is t is at most $n\left(\frac{e}{t}\right)^{t}$

Balls and Bins

X_{i} is the indicator random variable which turns on if the $i^{\text {th }}$ ball
falls into bin 1 and X is the number of balls that fall into bin 1

- $\mathbb{E}\left[X_{i}\right]=\mathbb{P}\left[X_{i}=1\right]=\frac{1}{k}$
- $\mathbb{E}[X]=\frac{n}{k}$
E_{i} is the indicator variable that bin i is empty
- Using the complement of X_{i} we find $\mathbb{P}\left[E_{i}\right]=\left(1-\frac{1}{k}\right)^{n}$
E is the number of empty locations
- $\mathbb{E}[E]=k\left(1-\frac{1}{k}\right)^{n}$
- $k=n \Longrightarrow \mathbb{E}[E]=n\left(1-\frac{1}{n}\right)^{n} \approx \frac{n}{e}$ and $\mathbb{E}[X]=\frac{n}{n}$
- How can we expect 1 item per location (very intuitive with n balls and n bins) and also expect more than a third of locations to be empty?
\mathcal{C} is the number of bins with ≥ 2 balls
- $\mathbb{E}[\mathcal{C}]=n-k+\mathbb{E}[E]=n-k+k\left(1-\frac{1}{k}\right)^{n}$

Load Balancing

Expected max load is $\sum_{t=1}^{n} t \mathbb{P}\left[M_{t}\right]$ where $\mathbb{P}\left[M_{t}\right] \leq n\left(\frac{e}{t}\right)^{t}$

- Split sum into two parts and bound each part separately.
- $\beta=\left\lceil\frac{5 \ln n}{\ln \ln n}\right\rceil$. How did we get this? Take a look at Note 15 .
- $\sum_{t=1}^{n} t \mathbb{P}\left[M_{t}\right]=\sum_{t=1}^{\beta} t \mathbb{P}\left[M_{t}\right]+\sum_{t=\beta}^{n} t \mathbb{P}\left[M_{t}\right]$

Sum over smaller values:

- Replace t with the upper bound of β
- $\sum_{t=1}^{\beta} t \mathbb{P}\left[M_{t}\right] \leq \sum_{t=1}^{\beta} \beta \mathbb{P}\left[M_{t}\right]=\beta \sum_{t=1}^{\beta} \mathbb{P}\left[M_{t}\right] \leq \beta$ as the sum of disjoint probabilities is bounded by 1

Sum over larger values:

- Use our expression for $\mathbb{P}\left[H_{i, t}\right]$ and see that $\mathbb{P}\left[M_{t}\right] \leq \frac{1}{n^{2}}$.
- Since this bound decreases as t grows, and $t \leq n$:
- $\sum_{t=\beta}^{n} t \mathbb{P}\left[M_{t}\right] \leq \sum_{t=\beta}^{n} n \frac{1}{n^{2}} \leq \sum_{t=\beta}^{n} \frac{1}{n} \leq 1$
- Expected max load is $O(\beta)=O\left(\frac{\ln n}{\ln \ln n}\right)$

Load Balancing

- Distributed computing: evenly distribute a workload
- m identical jobs, n identical processors (may not be identical but that won't actually matter)
- Ideally we should distribute these perfectly evenly so each processor gets $\frac{m}{n}$ jobs
- Centralized systems are capable of this, but centralized systems require a server to exert a degree of control that is often impractical
- This is actually similar to balls and bins!
- Let's continue using our random algorithm of hashing
- Let's try to derive an upper bound for the maximum length, assuming $m=n$

Universal Hashing

What we've been working with so far is " k-wise independent" hashing or fully independent hashing.

- For any number of balls k, the probability that they fall into the same bin of n bins is $\frac{1}{n^{k}}$
- Very strong requirement
- Fully independent hash functions require a large number of bits to store

Do we compromise, and make our worst case worse so we can have more space?

- Often you do have to sacrifice time for space, vice-versa
- But not this time! Let's inspect our worst-case
- Collisions only care about two balls colliding

We don't need " k-wise independence" we only need " 2 -wise independence"

Universal Hashing

Definition of Universal Hashing

- We say \mathcal{H} is 2-universal if $\forall x \neq y \in \mathbb{U}, \mathbb{P}[h(x)=h(y)] \leq \frac{1}{k}$
- Let \mathcal{C}_{x} be the number of collisions with item x, and $\mathcal{C}_{x, y}$ be the indicator that items x and y collide
- This implies $\mathbb{E}\left[\mathcal{C}_{x}\right]=\sum_{y \in \mathbb{U} \backslash\{x\}} \mathbb{E}\left[\mathcal{C}_{x, y}\right] \leq \frac{n}{k}=\alpha$
- α is called the "load factor"

If we can construct such an \mathcal{H} then we'll expect constant-time operations. . . pretty cool!

Perfect Hashing for Static Dictionaries

h is perfect for a given set of keys if all lookups are $O(1)$

- Hash into table A of size k with universal hashing
- We'll end up with some collisions

Rehash each bin with a new hash function for each bin

- This "second-layer" bin should have 0 collisions with high probability. . . how?
- If we hash n items to n^{2} buckets,
$\mathbb{E}[\mathcal{C}] \leq\binom{ n}{2} \frac{1}{n^{2}} \leq \frac{1}{2} \Longrightarrow \mathbb{P}[\mathcal{C} \geq 0] \leq \frac{1}{2}$
- If the $i^{\text {th }}$ entry of A has b_{i} items, then the second-layer hash table of the $i^{\text {th }}$ entry has size b_{i}^{2}

This is the FKS ${ }^{1}$ scheme for perfect hashing for the static dictionary problem.

Universal Hashing

Defining hashing scheme

- Our universe has size n and our hash table has size k
- Say k is prime and $n=k^{r} . \forall x \in \mathbb{U}: x=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{r}\end{array}\right]$
- Represent our key as a vector $\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{r}\end{array}\right]$ s.t. for all i, $x_{i} \in\{0, \ldots, k-1\}$
- Choose n-length random vector $V=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{r}\end{array}\right]$ from $\{0, \ldots, k-1\}^{r}$ and take dot product
Proving universality
- $x \neq y \Longrightarrow \exists i: x_{i} \neq y_{i}$ (at least one index different)
- $\mathbb{P}[h(x)=h(y)]=\mathbb{P}\left[\sum_{i=1}^{r} v_{i} x_{i}=\sum_{i=1}^{r} v_{i} y_{i}\right]$
$=\mathbb{P}\left[v_{i}\left(x_{i}-y_{i}\right)=\sum_{j \neq i} v_{j} y_{j}-\sum_{j \neq i} v_{j} x_{j}\right]$
- $x_{i}-y_{i}$ has an inverse modulo k
- $\mathbb{P}\left[v_{i}=\frac{\sum_{j \neq i} v_{j} y_{j}-\sum_{j \neq i} v_{j} x_{j}}{x_{i}-y_{i}}\right]=\frac{1}{k}$

There are lots of universal hash families; this is just one!

Analysis of FKS Hashing

- Total size of data structure is $O(k)$ (for the first hash table) plus $\sum_{i=1}^{k} b_{i}^{2}$ (for the second-layer hash tables) plus the cost to store the hash functions
- As we want to save space, we'd like $\sum_{i=1}^{k} b_{i}^{2} \in O(k)$
- $\sum_{i=1}^{k} b_{i}^{2}=2 \cdot \mathcal{C}+\sum_{i=1}^{k} b_{i}$ because $\mathcal{C}=\sum_{i=1}^{k}\binom{b_{i}}{2}=\frac{1}{2} \sum_{i=1}^{k} b_{i}^{2}-\frac{1}{2} \sum_{i=1}^{k} b_{i}$
- $\mathbb{E}\left[\sum_{i=1}^{k} b_{i}^{2}\right] \leq 2 \mathbb{E}[\mathcal{C}]+k=2\binom{k}{2} \frac{1}{k}+k \leq 2 k$
- Overall space is $O(k)$. To search, compute $i=h(x)$ and find key in $A_{i}\left[h_{i}(x)\right]$

Static Hashing

The dictionary problem (static):

- Store a set of items, each is a (key, value) pair
- The number of items we store will be roughly the same size as the hash table (i.e., we want to store $\approx k$ items)
- Support only one operation: search
- Binary search trees: search typically takes $O(\log k)$ time
- Hash table: search takes $O(1)$ time
- Distinct from the dynamic dictionary problem

Summary

- Described a single hash function mapping from universe to bins and saw how it was implemented in CS 61B
- Secured ourselves against adversaries by choosing hash functions randomly from a family
- Drew analogy from balls and bins to "fully independent hashing" to understand collisions
- Compared the load balancing problem to hashing and found a bound for the length of the longest list and therefore an $O(\cdot)$ expression for the expected worst-case performance
- To conserve space while maintaining collision resistance, we designed a universal hash family
- Armed with all this we made the FKS "perfect hashing" scheme for static dictionaries where even the worst-case lookup is constant!

