
Domino Tilings

Can you tile the grid with L-shaped tiles?

What about for a general 2n×2n grid and the hole is anywhere?



Gauss & Induction

An old story: seven-year-old Gauss is in class. Teacher asks:
what is 1+2+3+ · · ·+100?

I Gauss notices that the sum can be written as
(1+100)+(2+99)+(3+98)+ · · ·+(50+51).

I 50 pairs of numbers, each pair sums to 101.
I The answer is 5050.

Gauss was proving the statement

∀n ∈ N
( n

∑
i=0

i =
n(n+1)

2

)
.

We will prove it too, using induction.



Knocking over Dominoes

Consider an infinite line of dominoes:

. . .

How do you knock them all down? Easy answer: Knock over
the first one.

Why does domino 1 fall? You knocked it over.
Why does domino 2 fall? Domino 1 knocked it over.
...
Why does domino n+1 fall? Domino n knocked it over.

This is the key idea behind induction.



Principle of Mathematical Induction

Principle of Induction: To prove a statement ∀n ∈ N P(n), it is
enough to prove:

1. P(0);
2. ∀n ∈ N [P(n) =⇒ P(n+1)].

In symbols:

∀n ∈ N P(n)≡ P(0)∧ (∀n ∈ N [P(n) =⇒ P(n+1)]).

Why is induction helpful? We can assume that P(n) is true, and
then prove that P(n+1) holds.

Step 1 is the base case. Step 2 is the inductive step.
Assuming that P(n) holds is called the inductive hypothesis.



More on Induction

Suppose we have proven:
1. P(0);
2. ∀n ∈ N [P(n) =⇒ P(n+1)].

From Step 1, we have proven P(0).

As a special case of Step 2, we have proven P(0) =⇒ P(1).
Since we know P(0) holds, then we conclude that P(1) holds.

As a special case of Step 2, we have proven P(1) =⇒ P(2).
Since we know P(1) holds, then we conclude that P(2) holds.

Understand the idea?

Key idea: Proofs must be of finite length. The principle of
induction lets us “cheat” and condense an infinitely long proof.



Proving Gauss’s Formula
For all n ∈ N, ∑

n
i=0 i = n(n+1)/2.

I Base case: P(0).
0

∑
i=0

i =
0 ·1
2

.

The LHS and RHS are 0, so the base case holds.
I Inductive hypothesis: Assume P(n), i.e., assume

∑
n
i=0 i = n(n+1)/2 holds.

I Important: We assume P(n) holds for one unspecified
n ∈ N. We do NOT assume P(n) holds for all n.

I Inductive step: Prove P(n+1).

n+1

∑
i=0

i =
n

∑
i=0

i +n+1 =
n(n+1)

2
+n+1 =

(n+1)(n+2)
2

.

This completes the proof.



Better Triangle Inequality
Recall: For all x ,y ∈ R, |x +y | ≤ |x |+ |y | (Triangle Inequality).

Prove: For all positive integers n and real numbers x1, . . . ,xn,
we have |x1 + · · ·+xn| ≤ |x1|+ · · ·+ |xn|.

I Statement: P(n) = ∀x1, . . . ,xn ∈ R |∑n
i=1 xi | ≤ ∑

n
i=1 |xi |.

I Base case: Start with P(1). |x1| ≤ |x1| for all x1 ∈ R.
Obviously true.

I Inductive hypothesis: For some n ∈ N, assume that
|x1 + · · ·+xn| ≤ |x1|+ · · ·+ |xn| for all x1, . . . ,xn ∈ R.

I Inductive step: Prove ∀x1, . . . ,xn+1 ∈ R |∑n+1
i=1 xi | ≤ ∑

n+1
i=1 |xi |.

Let x1, . . . ,xn+1 be arbitrary real numbers.

∣∣∣n+1

∑
i=1

xi

∣∣∣= ∣∣∣ n

∑
i=1

xi +xn+1

∣∣∣≤ ∣∣∣ n

∑
i=1

xi

∣∣∣+ |xn+1| ≤
n

∑
i=1
|xi |+ |xn+1|.

This proves P(n+1).



Recursion & Induction

We define objects via recursion, and prove statements via
induction.

I The two concepts are closely related.
I Let a0 := 1, and for n ∈ N, define an+1 := 2an. (recursive

definition)
I Prove: For all n ∈ N, an = 2n. How? (inductive proof)

Recall from CS 61A: tree recursion.
I Example: Finding the height of a binary tree T .
I If T is a leaf, height(T ) = 1.
I Otherwise, height(T ) =

1+max{height(left subtree),height(right subtree)}.
Just as we can do recursion on trees, we can prove facts about
trees inductively. (Next topic: graph theory.)



Domino Tiling

For a positive integer n, consider the 2n×2n grid with the
upper-right corner missing.

Can we tile the grid with L-shaped tiles?

Base case, n = 1.

We are done!



Domino Tiling: Inductive Step

Now let us try n = 2.

Think of the 4×4 grid as four copies of the 2×2 grid. Apply
inductive tiling?

We failed!



Strengthening the Inductive Hypothesis

Counterintuitive idea: Make the theorem stronger.

New Theorem: For any positive integer n, given a 2n×2n grid
with any square missing, we can tile it with L-shaped tiles.

Counterintuitive?
I The theorem is now harder to prove, since the missing hole

can be anywhere.
I However, in an inductive proof where we assume P(n), we

have more information at our disposal to prove P(n+1).



Domino Tiling: Second Try

New Theorem: For any positive integer n, given a 2n×2n grid
with any square missing, we can tile it with L-shaped tiles.

Now, there are four base cases.

The missing hole can be anywhere, but we can rotate our L-tile
to accommodate all cases.



Domino Tiling: Second Try
Again, try n = 2.

I Split 4×4 grid into four 2×2 grids.
I In the 2×2 grid with the missing square, tile with inductive

hypothesis.

I Tile the other 2×2 grids with holes lining up using the
(strengthened) inductive hypothesis.

I Can you complete the proof?



Strengthening the Inductive Hypothesis

Key idea: The inductive claim must contain information in order
to propagate the claim from P(n) to P(n+1).

If your inductive claim does not contain enough information,
reformulate your theorem to include this necessary information.



Making Change

You live in a country where there are only two types of coins:
4-cent coins and 5-cent coins.

Question: If I need x cents total, using only 4-cent and 5-cent
coins, can you add up to exactly x cents?

I We cannot make change for amounts less than 4 cents.
I We cannot make change for 6 cents or 7 cents.
I We can make change for 8 cents with two 4-cent coins.
I We can make change for 9 cents with a 4-cent coin and a

5-cent coin.
I We can make change for 10 cents with two 5-cent coins.
I We cannot make change for 11 cents.



Think Inductively

Try to make change inductively.

If we can make change for x cents, we can make change for
x +4 cents (add a 4-cent coin).

However, if we can make change for x cents, it is not
necessarily true that we can make change for x +1 cents.

I We can make change for 10 cents, but not for 11 cents.

If induction is climbing a ladder one step at a time. . . here we
can climb the ladder four steps at a time.



Visualizing Change

Stare at this graph.

x x +1 x +2 x +3 x +4 x +5 · · ·· · ·

We can think of this as four separate ladders:
I P(0) =⇒ P(4), P(4) =⇒ P(8), P(8) =⇒ P(12), . . .
I P(1) =⇒ P(5), P(5) =⇒ P(9), P(9) =⇒ P(13), . . .
I P(2) =⇒ P(6), P(6) =⇒ P(10), P(10) =⇒ P(14), . . .
I P(3) =⇒ P(7), P(7) =⇒ P(11), P(11) =⇒ P(15), . . .

Idea: If we can make change for four consecutive numbers x ,
x +1, x +2, x +3, then we can make change for all n ≥ x .



Making Change

Theorem: Using 4-cent coins and 5-cent coins, we can make
change for n cents, where n is any integer which is at least 12.

Proof.
I 12 cents: Use three 4-cent coins.
I 13 cents: Use two 4-cent coins and a 5-cent coin.
I 14 cents: Use a 4-cent coin and two 5-cent coins.
I 15 cents: Use three 5-cent coins.
I Inductively, assume that we can make change for x , x +1,

x +2, and x +3, where x is some integer ≥ 12.
I How do we make change for x +4? Make change for x ,

and then add a 4-cent coin.



Strong Induction

More generally, this introduces the idea that we may need more
than just P(n) to prove P(n+1).

To prove ∀n ∈ N P(n), prove:
I P(0);
I ∀n ∈ N [(P(0)∧P(1)∧·· ·∧P(n)) =⇒ P(n+1)].

This is called strong induction.

Why does this work?
I We proved P(0).
I We proved P(0) and P(0) =⇒ P(1), so P(1) holds.
I We proved P(0), P(1), and (P(0)∧P(1)) =⇒ P(2), so

P(2) holds. (and so on)
I Knock over dominoes, where all previously knocked down

dominoes help knock over the next domino.



Existence of Prime Factorizations
Theorem: For any natural number n ≥ 2, we can write n as a
product of prime numbers.

Proof.
I Base case: n = 2 is itself prime.
I Inductive hypothesis: Let n ≥ 2 and suppose that n has a

prime factorization.
I Inductive step: Either n+1 is prime, or n+1 = ab where

a,b ∈ N with 1 < a,b < n+1. How do we factor a and b? 1

I Strong induction: Assume that for all 2≤ k ≤ n, we know
that k has a prime factorization.

I Apply strong inductive hypothesis to a and b to express
each as products of primes.

I Thus, n+1 is a product of primes.

1Remark: Relating the prime factorization of n with the prime factorization
of n+1 is an incredibly difficult unsolved problem in number theory.



Strong Induction Is Equivalent to Induction

Strong induction. . . is a misleading name.

Strong induction implies ordinary induction.
I Ordinary induction is the same as strong induction, except

that we forget that we proved P(0),P(1), . . . ,P(n−1).
We only use P(n) to prove P(n+1).

Ordinary induction implies strong induction.
I Given a sequence of propositions

P(0),P(1),P(2),P(3), . . . , define the propositions

Q(n) := P(0)∧P(1)∧·· ·∧P(n), for n ∈ N.

I Ordinary induction to prove ∀n ∈ N Q(n) is equivalent to
using strong induction to prove ∀n ∈ N P(n).



Strong Induction

If you do not need strong induction, then just use ordinary
(weak) induction.

I Try weak induction first.
I If you need more information, just upgrade to strong

induction at no additional cost.

Strong induction is not really a different technique from ordinary
induction.

Strong induction is a different way to apply ordinary induction.



All Horses Are the Same Color

“Theorem”: All horses are the same color.

“Proof ”.
I We will use induction on the size of the set of horses.
I Base case: For a set containing one horse, all horses in

the set are the same color.
I Inductive hypothesis: Assume that for all sets containing n

horses, all horses in the set are the same color.
I Inductive step: Consider a set of n+1 horses.
I By the inductive hypothesis, the first n horses are the same

color. The last n horses are also the same color.
I Since the first n and last n horses overlap, then all n+1

horses are the same color. ♠
Spot the mistake!



Actually, Not All Horses Are the Same Color

The implication P(1) =⇒ P(2) fails.
I For a set of two horses, the first horse and last horse do

NOT overlap.

Moral of the story: Be careful!
I Also check the base case!
I The base case is usually easy so it is sometimes ignored.
I This costs you points on the midterm.



Summary

I To prove ∀n ∈ N P(n), prove:
1. the base case P(0), and
2. for all n ∈ N, assume P(n) and prove P(n+1).

I Domino tilings and moving the hole around:
I Sometimes strengthening the claim makes it easier to

prove!
I Strong induction: in the inductive step, assume

P(0),P(1), . . . ,P(n−1) in addition to P(n).
I Strong induction is equivalent to ordinary induction.
I All horses are not the same color: you can make mistakes

if you are not careful.


