Domino Tilings

Can you tile the grid with L-shaped tiles?

What about for a general 27 x 2" grid and the hole is anywhere?

Gauss & Induction

An old story: seven-year-old Gauss is in class. Teacher asks:
whatis 1+2+3+---+1007?

» Gauss notices that the sum can be written as
(1+100)+(24+99)+(3+98)+---+(50+51).
» 50 pairs of numbers, each pair sums to 101.
» The answer is 5050.
Gauss was proving the statement

VneN(éi:w»

We will prove it too, using induction.

Knocking over Dominoes

Consider an infinite line of dominoes:

130000000

How do you knock them all down? Easy answer: Knock over
the first one.

Why does domino 1 fall? You knocked it over.
Why does domino 2 fall? Domino 1 knocked it over.

Why does domino n+ 1 fall? Domino n knocked it over.

This is the key idea behind induction.

Principle of Mathematical Induction

Principle of Induction: To prove a statement Vn € N P(n), it is
enough to prove:

1. P(0);
2. VneN[P(n) = P(n+1)].
In symbols:

Vne N P(n)=P(0)A(VneN[P(n) = P(n+1)]).

Why is induction helpful? We can assume that P(n) is true, and
then prove that P(n+ 1) holds.

Step 1 is the base case. Step 2 is the inductive step.
Assuming that P(n) holds is called the inductive hypothesis.

More on Induction

Suppose we have proven:
1. P(0);
2. VneN[P(n) = P(n+1)].

From Step 1, we have proven P(0).

As a special case of Step 2, we have proven P(0) = P(1).
Since we know P(0) holds, then we conclude that P(1) holds.

As a special case of Step 2, we have proven P(1) = P(2).
Since we know P(1) holds, then we conclude that P(2) holds.

Understand the idea?

Key idea: Proofs must be of finite length. The principle of

induction lets us “cheat” and condense an infinitely long proof.

Proving Gauss’s Formula

ForallneN, Y ,i=n(n+1)/2.
» Base case: P(0).

0 . 0-1
= —.
ri=5

The LHS and RHS are 0, so the base case holds.
» Inductive hypothesis: Assume P(n), i.e., assume
7 oi=n(n+1)/2 holds.
» Important: We assume P(n) holds for one unspecified
neN. We do NOT assume P(n) holds for all n.

» Inductive step: Prove P(n+1).
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This completes the proof. [




Better Triangle Inequality
Recall: For all x,y e R, |x+ y| < |x| + |y| (Triangle Inequality).

Prove: For all positive integers n and real numbers xi,..., Xn,
we have [x1+ -+ Xp| < |Xq1|+ -+ |Xn|.
» Statement: P(n) =Vxq,....xp € R|L 1 x| < X714 |Xil.
» Base case: Start with P(1). |xq| < |x1] for all x; € R.
Obviously true.
» Inductive hypothesis: For some n € N, assume that
[X1 4+ Xn| < X1 +---+|xp| forall xq,...,xp €R.
> Inductive step: Prove Vxi,...,Xp41 € R| LM x| < T8 [x].
Let x,...,Xp+1 be arbitrary real numbers.
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This proves P(n+1). [
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Recursion & Induction

We define objects via recursion, and prove statements via
induction.

» The two concepts are closely related.

» Let gy :=1, and for n € N, define a,;1 := 2a,. (recursive
definition)

» Prove: Forall ne N, a, =2". How? (inductive proof)

Recall from CS 61A: tree recursion.

» Example: Finding the height of a binary tree T.

> If T is a leaf, height(T) = 1.

» Otherwise, height(T) =
1+ max{height(left subtree), height(right subtree)}.

Just as we can do recursion on trees, we can prove facts about
trees inductively. (Next topic: graph theory.)

Domino Tiling

For a positive integer n, consider the 2" x 2" grid with the
upper-right corner missing.

Can we tile the grid with L-shaped tiles?

Base case, n=1.
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We are done!

Domino Tiling: Inductive Step

Now let us try n=2.

Think of the 4 x 4 grid as four copies of the 2 x 2 grid. Apply

inductive tiling?

We failed!

Strengthening the Inductive Hypothesis

Counterintuitive idea: Make the theorem stronger.

New Theorem: For any positive integer n, given a 2" x 2" grid
with any square missing, we can tile it with L-shaped tiles.

Counterintuitive?
» The theorem is now harder to prove, since the missing hole
can be anywhere.
» However, in an inductive proof where we assume P(n), we
have more information at our disposal to prove P(n+1).

Domino Tiling: Second Try

New Theorem: For any positive integer n, given a 2" x 2" grid
with any square missing, we can tile it with L-shaped tiles.

Now, there are four base cases.
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The missing hole can be anywhere, but we can rotate our L-tile
to accommodate all cases.




Domino Tiling: Second Try
Again, try n=2.

» Split 4 x 4 grid into four 2 x 2 grids.

» In the 2 x 2 grid with the missing square, tile with inductive
hypothesis.

» Tile the other 2 x 2 grids with holes lining up using the
(strengthened) inductive hypothesis.

» Can you complete the proof? [J

Strengthening the Inductive Hypothesis

Key idea: The inductive claim must contain information in order
to propagate the claim from P(n) to P(n+1).

If your inductive claim does not contain enough information,

reformulate your theorem to include this necessary information.

Making Change

You live in a country where there are only two types of coins:
4-cent coins and 5-cent coins.

Question: If | need x cents total, using only 4-cent and 5-cent
coins, can you add up to exactly x cents?

» We cannot make change for amounts less than 4 cents.
» We cannot make change for 6 cents or 7 cents.
» We can make change for 8 cents with two 4-cent coins.

» We can make change for 9 cents with a 4-cent coin and a
5-cent coin.

» We can make change for 10 cents with two 5-cent coins.
» We cannot make change for 11 cents.

Think Inductively

Try to make change inductively.

If we can make change for x cents, we can make change for
X +4 cents (add a 4-cent coin).

However, if we can make change for x cents, it is not
necessarily true that we can make change for x + 1 cents.

» We can make change for 10 cents, but not for 11 cents.

If induction is climbing a ladder one step at a time. .. here we
can climb the ladder four steps at a time.

Visualizing Change

Stare at this graph.
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We can think of this as four separate ladders:
» P(0) = P(4), P(4) = P(8), P(8) = P(12), ...
» P(1) = P(5), P(5) = P(9), P(9) = P(13), ...
» P(2) = P(6), P(6) = P(10), P(10) = P(14), ...
» P(3) = P(7), P(7) = P(11), P(11) = P(15), ...

Idea: If we can make change for four consecutive numbers x,
x+1, x+2, x+ 3, then we can make change for all n > x.

Making Change

Theorem: Using 4-cent coins and 5-cent coins, we can make
change for n cents, where n is any integer which is at least 12.

Proof.
» 12 cents: Use three 4-cent coins.
» 13 cents: Use two 4-cent coins and a 5-cent coin.
» 14 cents: Use a 4-cent coin and two 5-cent coins.
15 cents: Use three 5-cent coins.
Inductively, assume that we can make change for x, x+1,
Xx+2, and x+ 3, where x is some integer > 12.
» How do we make change for x +4? Make change for x,
and then add a 4-cent coin. [
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Strong Induction

More generally, this introduces the idea that we may need more
than just P(n) to prove P(n+1).

To prove Vn € N P(n), prove:

> P(0);

» VneN[(P(O)AP(1)A---AP(n)) = P(n+1)].
This is called strong induction.

Why does this work?
» We proved P(0).
» We proved P(0) and P(0) = P(1), so P(1) holds.
» We proved P(0), P(1), and (P(0)AP(1)) = P(2), so
P(2) holds. (and so on)

» Knock over dominoes, where all previously knocked down
dominoes help knock over the next domino.

Existence of Prime Factorizations

Theorem: For any natural number n > 2, we can write n as a
product of prime numbers.

Proof.
» Base case: n=2 is itself prime.

» Inductive hypothesis: Let n > 2 and suppose that n has a
prime factorization.

» Inductive step: Either n+ 1 is prime, or n+1 = ab where
a,beNwith 1 < a,b< n+1. How do we factor aand b? !

» Strong induction: Assume that for all 2 < k < n, we know
that k has a prime factorization.

» Apply strong inductive hypothesis to a and b to express
each as products of primes.

» Thus, n+1 is a product of primes. [

"Remark: Relating the prime factorization of n with the prime factorization
of n+ 1 is an incredibly difficult unsolved problem in number theory.

Strong Induction Is Equivalent to Induction

Strong induction. . . is a misleading name.

Strong induction implies ordinary induction.

» Ordinary induction is the same as strong induction, except
that we forget that we proved P(0),P(1),...,P(n—1).
We only use P(n) to prove P(n+1).

Ordinary induction implies strong induction.

» Given a sequence of propositions
P(0),P(1),P(2),P(3),..., define the propositions

Q(n) :=PO)AP(1)A---AP(n), forneN.

» Ordinary induction to prove Vn € N Q(n) is equivalent to
using strong induction to prove Yn e N P(n).

Strong Induction

If you do not need strong induction, then just use ordinary
(weak) induction.

» Try weak induction first.

» If you need more information, just upgrade to strong
induction at no additional cost.

Strong induction is not really a different technique from ordinary
induction.

Strong induction is a different way to apply ordinary induction.

All Horses Are the Same Color

“Theorem”: All horses are the same color.

“Proof”.
» We will use induction on the size of the set of horses.

» Base case: For a set containing one horse, all horses in
the set are the same color.

» Inductive hypothesis: Assume that for all sets containing n
horses, all horses in the set are the same color.

» Inductive step: Consider a set of n+ 1 horses.

» By the inductive hypothesis, the first n horses are the same
color. The last n horses are also the same color.

» Since the first n and last n horses overlap, then all n+ 1
horses are the same color. &

Spot the mistake!

Actually, Not All Horses Are the Same Color

The implication P(1) = P(2) falils.
» For a set of two horses, the first horse and last horse do
NOT overlap.

Moral of the story: Be careful!
» Also check the base case!
» The base case is usually easy so it is sometimes ignored.
» This costs you points on the midterm.




Summary

» To prove ¥Yn € N P(n), prove:
1. the base case P(0), and
2. for all ne N, assume P(n) and prove P(n+1).

» Domino tilings and moving the hole around:
» Sometimes strengthening the claim makes it easier to
prove!

» Strong induction: in the inductive step, assume
P(0),P(1),...,P(n—1) in addition to P(n).

» Strong induction is equivalent to ordinary induction.

» All horses are not the same color: you can make mistakes
if you are not careful.




