Domino Tilings

Can you tile the grid with L-shaped tiles?

What about for a general $2^{n} \times 2^{n}$ grid and the hole is anywhere?

Principle of Mathematical Induction

Principle of Induction: To prove a statement $\forall n \in \mathbb{N} P(n)$, it is enough to prove:

1. $P(0)$;
2. $\forall n \in \mathbb{N}[P(n) \Longrightarrow P(n+1)]$.

In symbols:

$$
\forall n \in \mathbb{N} P(n) \equiv P(0) \wedge(\forall n \in \mathbb{N}[P(n) \Longrightarrow P(n+1)])
$$

Why is induction helpful? We can assume that $P(n)$ is true, and then prove that $P(n+1)$ holds.

Step 1 is the base case. Step 2 is the inductive step. Assuming that $P(n)$ holds is called the inductive hypothesis.

Gauss \& Induction

An old story: seven-year-old Gauss is in class. Teacher asks: what is $1+2+3+\cdots+100$?

- Gauss notices that the sum can be written as
$(1+100)+(2+99)+(3+98)+\cdots+(50+51)$.
- 50 pairs of numbers, each pair sums to 101.
- The answer is 5050 .

Gauss was proving the statement

$$
\forall n \in \mathbb{N}\left(\sum_{i=0}^{n} i=\frac{n(n+1)}{2}\right) .
$$

We will prove it too, using induction.

More on Induction

Suppose we have proven:

1. $P(0)$;
2. $\forall n \in \mathbb{N}[P(n) \Longrightarrow P(n+1)]$.

From Step 1, we have proven $P(0)$.
As a special case of Step 2, we have proven $P(0) \Longrightarrow P(1)$. Since we know $P(0)$ holds, then we conclude that $P(1)$ holds.

As a special case of Step 2, we have proven $P(1) \Longrightarrow P(2)$. Since we know $P(1)$ holds, then we conclude that $P(2)$ holds.

Understand the idea?
Key idea: Proofs must be of finite length. The principle of induction lets us "cheat" and condense an infinitely long proof

Knocking over Dominoes

Consider an infinite line of dominoes:

How do you knock them all down? Easy answer: Knock over the first one.

Why does domino 1 fall? You knocked it over.
Why does domino 2 fall? Domino 1 knocked it over.
Why does domino $n+1$ fall? Domino n knocked it over.
This is the key idea behind induction.

Proving Gauss's Formula

For all $n \in \mathbb{N}, \sum_{i=0}^{n} i=n(n+1) / 2$.

- Base case: $P(0)$.

$$
\sum_{i=0}^{0} i=\frac{0 \cdot 1}{2} .
$$

The LHS and RHS are 0, so the base case holds.

- Inductive hypothesis: Assume $P(n)$, i.e., assume $\sum_{i=0}^{n} i=n(n+1) / 2$ holds.
- Important: We assume $P(n)$ holds for one unspecified $n \in \mathbb{N}$. We do NOT assume $P(n)$ holds for all n.
- Inductive step: Prove $P(n+1)$.

$$
\sum_{i=0}^{n+1} i=\sum_{i=0}^{n} i+n+1=\frac{n(n+1)}{2}+n+1=\frac{(n+1)(n+2)}{2} .
$$

This completes the proof. $\quad \square$

Better Triangle Inequality

Recall: For all $x, y \in \mathbb{R},|x+y| \leq|x|+|y|$ (Triangle Inequality).
Prove: For all positive integers n and real numbers x_{1}, \ldots, x_{n}, we have $\left|x_{1}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|$.

- Statement: $P(n)=\forall x_{1}, \ldots, x_{n} \in \mathbb{R}\left|\sum_{i=1}^{n} x_{i}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|$.
- Base case: Start with $P(1) .\left|x_{1}\right| \leq\left|x_{1}\right|$ for all $x_{1} \in \mathbb{R}$. Obviously true.
- Inductive hypothesis: For some $n \in \mathbb{N}$, assume that $\left|x_{1}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|$ for all $x_{1}, \ldots, x_{n} \in \mathbb{R}$.
- Inductive step: Prove $\forall x_{1}, \ldots, x_{n+1} \in \mathbb{R}\left|\sum_{i=1}^{n+1} x_{i}\right| \leq \sum_{i=1}^{n+1}\left|x_{i}\right|$. Let x_{1}, \ldots, x_{n+1} be arbitrary real numbers

$$
\left|\sum_{i=1}^{n+1} x_{i}\right|=\left|\sum_{i=1}^{n} x_{i}+x_{n+1}\right| \leq\left|\sum_{i=1}^{n} x_{i}\right|+\left|x_{n+1}\right| \leq \sum_{i=1}^{n}\left|x_{i}\right|+\left|x_{n+1}\right| .
$$

This proves $P(n+1) . \quad \square$

Domino Tiling: Inductive Step

Now let us try $n=2$.

Think of the 4×4 grid as four copies of the 2×2 grid. Apply inductive tiling?

We failed.

Recursion \& Induction

We define objects via recursion, and prove statements via induction.

- The two concepts are closely related
- Let $a_{0}:=1$, and for $n \in \mathbb{N}$, define $a_{n+1}:=2 a_{n}$. (recursive definition
- Prove: For all $n \in \mathbb{N}, a_{n}=2^{n}$. How? (inductive proof) Recall from CS 61A: tree recursion.
- Example: Finding the height of a binary tree T.
- If T is a leaf, $\operatorname{height}(T)=1$.
- Otherwise, $\operatorname{height}(T)=$
$1+\max \{$ height(left subtree), height(right subtree) $\}$
Just as we can do recursion on trees, we can prove facts about trees inductively. (Next topic: graph theory.)

Strengthening the Inductive Hypothesis

Counterintuitive idea: Make the theorem stronger.
New Theorem: For any positive integer n, given a $2^{n} \times 2^{n}$ grid with any square missing, we can tile it with L-shaped tiles.

Counterintuitive?

- The theorem is now harder to prove, since the missing hole can be anywhere.
- However, in an inductive proof where we assume $P(n)$, we have more information at our disposal to prove $P(n+1)$.

Domino Tiling

For a positive integer n, consider the $2^{n} \times 2^{n}$ grid with the upper-right corner missing.

Can we tile the grid with L-shaped tiles?

Base case, $n=1$.

We are done!

Domino Tiling: Second Try

New Theorem: For any positive integer n, given a $2^{n} \times 2^{n}$ grid with any square missing, we can tile it with L-shaped tiles.

Now, there are four base cases.

The missing hole can be anywhere, but we can rotate our L-tile o accommodate all cases.

Domino Tiling: Second Try

Again, try $n=2$.

- Split 4×4 grid into four 2×2 grids.
- In the 2×2 grid with the missing square, tile with inductive hypothesis.

- Tile the other 2×2 grids with holes lining up using the (strengthened) inductive hypothesis.
- Can you complete the proof? \square

Think Inductively

Try to make change inductively.
If we can make change for x cents, we can make change for $x+4$ cents (add a 4 -cent coin).

However, if we can make change for x cents, it is not necessarily true that we can make change for $x+1$ cents.

- We can make change for 10 cents, but not for 11 cents.

If induction is climbing a ladder one step at a time. . . here we can climb the ladder four steps at a time.

Strengthening the Inductive Hypothesis

Key idea: The inductive claim must contain information in order to propagate the claim from $P(n)$ to $P(n+1)$.

If your inductive claim does not contain enough information, reformulate your theorem to include this necessary information.

Visualizing Change

Stare at this graph.

We can think of this as four separate ladders:

- $P(0) \Longrightarrow P(4), P(4) \Longrightarrow P(8), P(8) \Longrightarrow P(12), \ldots$
- $P(1) \Longrightarrow P(5), P(5) \Longrightarrow P(9), P(9) \Longrightarrow P(13), \ldots$
- $P(2) \Longrightarrow P(6), P(6) \Longrightarrow P(10), P(10) \Longrightarrow P(14), \ldots$
- $P(3) \Longrightarrow P(7), P(7) \Longrightarrow P(11), P(11) \Longrightarrow P(15), \ldots$

Idea: If we can make change for four consecutive numbers x, $x+1, x+2, x+3$, then we can make change for all $n \geq x$.

Making Change

You live in a country where there are only two types of coins: 4 -cent coins and 5 -cent coins.

Question: If I need x cents total, using only 4-cent and 5-cent coins, can you add up to exactly x cents?

- We cannot make change for amounts less than 4 cents.
- We cannot make change for 6 cents or 7 cents.
- We can make change for 8 cents with two 4-cent coins
- We can make change for 9 cents with a 4-cent coin and a 5-cent coin
- We can make change for 10 cents with two 5 -cent coins.
- We cannot make change for 11 cents.

Making Change

Theorem: Using 4-cent coins and 5-cent coins, we can make change for n cents, where n is any integer which is at least 12 .

Proof.

- 12 cents: Use three 4-cent coins.
- 13 cents: Use two 4-cent coins and a 5-cent coin.
- 14 cents: Use a 4-cent coin and two 5-cent coins.
- 15 cents: Use three 5 -cent coins.
- Inductively, assume that we can make change for $x, x+1$, $x+2$, and $x+3$, where x is some integer ≥ 12
- How do we make change for $x+4$? Make change for x, and then add a 4-cent coin. \square

Strong Induction

More generally, this introduces the idea that we may need more than just $P(n)$ to prove $P(n+1)$.

To prove $\forall n \in \mathbb{N} P(n)$, prove:

- $P(0)$;
- $\forall n \in \mathbb{N}[(P(0) \wedge P(1) \wedge \cdots \wedge P(n)) \Longrightarrow P(n+1)]$.

This is called strong induction.
Why does this work?

- We proved $P(0)$.
- We proved $P(0)$ and $P(0) \Longrightarrow P(1)$, so $P(1)$ holds.
- We proved $P(0), P(1)$, and $(P(0) \wedge P(1)) \Longrightarrow P(2)$, so $P(2)$ holds. (and so on)
- Knock over dominoes, where all previously knocked down dominoes help knock over the next domino.

Strong Induction

If you do not need strong induction, then just use ordinary (weak) induction.

- Try weak induction first
- If you need more information, just upgrade to strong induction at no additional cost.

Strong induction is not really a different technique from ordinary induction.

Strong induction is a different way to apply ordinary induction.

Existence of Prime Factorizations

Theorem: For any natural number $n \geq 2$, we can write n as a product of prime numbers.

Proof.

- Base case: $n=2$ is itself prime.
- Inductive hypothesis: Let $n \geq 2$ and suppose that n has a prime factorization.
- Inductive step: Either $n+1$ is prime, or $n+1=a b$ where $a, b \in \mathbb{N}$ with $1<a, b<n+1$. How do we factor a and b ?
- Strong induction: Assume that for all $2 \leq k \leq n$, we know that k has a prime factorization.
- Apply strong inductive hypothesis to a and b to express each as products of primes.
- Thus, $n+1$ is a product of primes. \square
${ }^{1}$ Remark: Relating the prime factorization of n with the prime factorization of $n+1$ is an incredibly difficult unsolved problem in number theory

All Horses Are the Same Color

"Theorem": All horses are the same color.
"Proof".

- We will use induction on the size of the set of horses.
- Base case: For a set containing one horse, all horses in the set are the same color.
- Inductive hypothesis: Assume that for all sets containing n horses, all horses in the set are the same color.
- Inductive step: Consider a set of $n+1$ horses.
- By the inductive hypothesis, the first n horses are the same color. The last n horses are also the same color.
- Since the first n and last n horses overlap, then all $n+1$ horses are the same color.
Spot the mistake!

Strong Induction Is Equivalent to Induction

Strong induction. . . is a misleading name.
Strong induction implies ordinary induction.

- Ordinary induction is the same as strong induction, except that we forget that we proved $P(0), P(1), \ldots, P(n-1)$.
We only use $P(n)$ to prove $P(n+1)$.

Ordinary induction implies strong induction.

- Given a sequence of propositions
$P(0), P(1), P(2), P(3), \ldots$, define the propositions

$$
Q(n):=P(0) \wedge P(1) \wedge \cdots \wedge P(n), \quad \text { for } n \in \mathbb{N} .
$$

- Ordinary induction to prove $\forall n \in \mathbb{N} Q(n)$ is equivalent to using strong induction to prove $\forall n \in \mathbb{N} P(n)$.

Actually, Not All Horses Are the Same Color

The implication $P(1) \Longrightarrow P(2)$ fails.

- For a set of two horses, the first horse and last horse do NOT overlap.

Moral of the story: Be careful!

- Also check the base case
- The base case is usually easy so it is sometimes ignored
- This costs you points on the midterm.

Summary

- To prove $\forall n \in \mathbb{N} P(n)$, prove

1. the base case $P(0)$, and
2. for all $n \in \mathbb{N}$, assume $P(n)$ and prove $P(n+1)$.

- Domino tilings and moving the hole around:
- Sometimes strengthening the claim makes it easier to prove!
- Strong induction: in the inductive step, assume $P(0), P(1), \ldots, P(n-1)$ in addition to $P(n)$.
- Strong induction is equivalent to ordinary induction.
- All horses are not the same color: you can make mistakes if you are not careful.

