
Probability Theory Review

I probability space setup
I conditional probability
I random variables and their distributions
I joint distributions, conditional distributions, independence

of random variables
I expectation, variance, covariance
I inequalities, confidence intervals, Weak Law of Large

Numbers, Central Limit Theorem
I Markov chains

Too much material! Some of these slides will be skipped in
lecture, but are included so you can look them over later.

Probability Space Framework
A probability space consists of (Ω,F ,P) where:
I Ω is the set of all outcomes;
I F is the family of events, where an event is a subset of Ω;
I a probability law P : F → [0,1] satisfying P(Ω) = 1 and for

all countable disjoint A1,A2,A3, . . . , P(
⋃∞

i=1 Ai) = ∑∞
i=1P(Ai).

Important: Probabilities are assigned to events. If X is a
random variable, then P(X ) makes no sense!

Discrete probability:
I The sample space Ω is countable.
I The probability law is fully specified by giving the

probability of each individual outcome P({ω}) for ω ∈ Ω.
I For any event A, P(A) = ∑ω∈AP({ω}).
I We abbreviate P({ω}) as P(ω).

Continuous Probability

Continuous probability:
I Consider the uniform distribution on Ω = [0,1].
I The sample space is uncountable.
I It is no longer enough to specify the probability of each

outcome. In fact, P(ω) = 0 for each ω ∈ [0,1].
I Instead, to fully specify the probability law, we must give

the probability of intervals [a,b], where a < b.
I For the uniform distribution, P([a,b]) = b−a.

Role of the probability space:
I Usually, we care more about random variables; the

probability space sits in the background, forgotten.
I Why did Kolmogorov need to set up a probability space?

Answer: to unify probability with the rest of mathematics.

Basic Probability Facts

We can derive facts from the probability axioms:
I P(∅) = 0.
I If Ac := Ω\A is the complement of A, then

P(Ac) = 1−P(A).
I Inclusion-Exclusion: P(A∪B) = P(A) +P(B)−P(A∩B).
I Union Bound: P(A∪B)≤ P(A) +P(B). Then, by induction,

P(
⋃n

i=1 Ai)≤ ∑n
i=1P(Ai).

I Generalized Inclusion-Exclusion:
P(
⋃n

i=1 Ai) = ∑n
i=1 (−1)n+1 ∑S⊆{1,...,n}, |S|=i P(

⋂
j∈S Aj).

I Note: In probability, P(A∩B) is abbreviated as P(A,B).

Conditional Probability
Given an event B with P(B) > 0, define

P(A | B) :=
P(A∩B)

P(B)
.

Interpretation: After observing B, we move from the probability
space Ω with law P to the smaller space B with law P(· | B).

Why use conditional probability?
I Product Rule: P(A∩B) = P(B)P(A | B). Calculate

probabilities step-by-step!
I More generally, P(

⋂n
i=1 Ai) = P(A1)∏n

i=2P(Ai |
⋂i−1

j=1 Aj).

I B1, . . . ,Bn partition Ω if they are disjoint and
⋃n

i=1 Bi = Ω.
I Law of Total Probability: If B1, . . . ,Bn partition Ω, then

P(A) = ∑n
i=1P(A∩Bi) = ∑n

i=1P(Bi)P(A | Bi).
I “Divide and conquer” strategy for calculating P(A).

Bayes Rule

If B1, . . . ,Bn are possible causes, and A is the effect, then for
each i = 1, . . . ,n,

P(Bi | A) =
P(Bi)P(A | Bi)

∑n
j=1P(Bj)P(A | Bj)

.

Why is this so important?
I P(Bi) is the prior probability. How likely is Bi , before you

observe anything?
I P(A | Bi) is the conditional probability. The likelihood of

the effect given the cause Bi .
I Bayes Rule tells you to multiply the two effects, and then

renormalize.
I Then, you can infer what the probability of the cause is,

given the effect. “Update your beliefs after observing A.”



Independence

If P(A | B) = P(A), we say that A and B are independent.
I Interpretation: Even after observing B, A is just as likely to

occur as before.
I This definition is not so symmetric.

Alternative definition: P(A∩B) = P(A)P(B).
I This definition works even when P(A) = 0 or P(B) = 0.

What is the difference between disjoint and independent?
I Disjoint: A∩B = ∅. P(A∪B) = P(A) +P(B).
I Independent: P(A∩B) = P(A)P(B).
I Not the same! If A and B are disjoint, then after observing

B, you know A cannot happen: P(A | B) = 0.
I So if A and B are disjoint, then they are not independent

(except for edge cases).

Mutual Independence

What does it mean for events A1, . . . ,An to be independent?

Pairwise independence:
I Each pair of events is independent.
I Not as useful!

Mutual independence:
I For all subsets S ⊆ {1, . . . ,n}, P(

⋂
i∈S Ai) = ∏i∈S P(Ai).

I For three events, this means pairwise independence plus
another condition: P(A1∩A2∩A3) = P(A1)P(A2)P(A3).

I Pairwise independence does not imply mutual
independence.

I When we mention multiple objects being “independent”,
we mean mutually independent, unless otherwise stated.

Random Variables

A random variable (RV) X is a function X : Ω→ R.
I What can you do with functions? Add them, multiply them.
I Can you take unions of functions? No! So, for random

variables, X1∪X2 is nonsense!

Notation:
I For x ∈ R, {X = x} is an event. So, {X = x} ⊆ Ω. What

does it mean?
I {X = x} := {ω ∈ Ω : X (ω) = x}. The set of outcomes for

which X takes on the value x .
I Another way to write this is {X = x}= X−1({x}) (the

inverse image of {x} under the function X ).
I Similarly, for A⊆ R, {X ∈ A} is the event X−1(A).
I Abbreviate P({X = x}) as P(X = x).

Distribution of a Random Variable

For a discrete RV X , the probability mass function (PMF),
denoted pX , is the function pX (x) := P(X = x).
I For discrete probability spaces, it is enough to specify the

probability of individual outcomes.
I Similarly, for discrete RVs, just specify the PMF.

For a continuous RV X , the PMF no longer makes sense.
I For continuous probability spaces, we needed to specify

the probability of intervals.
I Similarly, here we need some way of specifying

P(X ∈ [a,b]) for intervals [a,b].
I We use a probability density function (PDF): a function

fX : R→ R≥0 such that
∫ ∞
−∞ fX (x)dx = 1.

I Then, P(X ∈ [a,b]) =
∫ b

a fX (x)dx .

Distribution of a Random Variable

Definition that works for both discrete and continuous RVs:
I The cumulative distribution function (CDF) is the function

FX : R→ [0,1] given by FX (x) := P(X ≤ x).
I Conversion table to/from CDF:

X takes values in Z X continuous

to FX (x) =
x

∑
s=−∞

pX (s) FX (x) =
∫ x

−∞
fX (s)ds

from pX (x) = FX (x)−FX (x−1) fX (x) =
d

dx
FX (x)

What do we mean by “give the distribution of X ”?
I Giving the CDF always works. Or, give the PMF (discrete)

or PDF (continuous).
I Give a named distribution with parameters.

Interpretation of the PDF

For a continuous RV X , what is the interpretation of fX ?

Let δ > 0 be very small. Then, P(X ∈ [x ,x + δ ]) =
∫ x+δ

x fX (s)ds.
Plot of fX (x) vs. x :

This is approximately fX (x) ·δ .

So,

fX (x)≈ P(X ∈ [x ,x + δ ])

δ
.

fX (x) is like the “probability per unit length” near x .



Multiple Random Variables

When we have two random variables, X and Y , we describe
their joint distribution via:
I (both discrete) the joint PMF pX ,Y (x ,y) := P(X = x ,Y = y);
I (both continuous) the joint PDF fX ,Y : R2→ R≥0 such that∫ ∞

−∞
∫ ∞
−∞ fX ,Y (x ,y)dx dy = 1.

The definitions extend for more than two RVs.

The notation P(X = x ,Y = y) is shorthand for
P({X = x}∩{Y = y}) = P({ω ∈ Ω : X (ω) = x and Y (ω) = y}).

How to calculate probabilities: for A⊆ R2,
I (discrete) P((X ,Y ) ∈ A) = ∑(x ,y)∈A pX ,Y (x ,y);
I (continuous) P((X ,Y ) ∈ A) =

∫∫
A fX ,Y (x ,y)dx dy .

Marginalization

Given the joint distribution of (X ,Y ), we can recover the
marginal distribution of X via:
I (discrete, Y takes values in Z) pX (x) = ∑∞

y=−∞ pX ,Y (x ,y);
I (continuous) fX (x) =

∫ ∞
−∞ fX ,Y (y)dy .

Example where X and Y take on two values each:

y = 0 y = 1 pX
x = 0 pX ,Y (0,0) = 0.1 pX ,Y (0,1) = 0.3 pX (0) = 0.4
x = 1 pX ,Y (1,0) = 0.2 pX ,Y (1,1) = 0.4 pX (1) = 0.6

pY pY (0) = 0.3 pY (1) = 0.7

I From the joint, we can recover the marginals.
I From the marginals of X and Y , we do not have enough

information to recover the joint.

Conditional Distributions

Independence of RVs: X and Y are independent if for all A, B,
P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B).
I (both discrete) the joint PMF factorizes:

pX ,Y (x ,y) = pX (x)pY (y) for all x , y ;
I (both continuous) the joint PDF factorizes:

fX ,Y (x ,y) = fX (x)fY (y) for all x , y .
I If X and Y are independent, then so are f (X ) and g(Y )

(any functions of them).
I “i.i.d.” means “independent and identically distributed”.

Conditional distributions:
I (conditional PMF)

pX |Y (x | y) := P(X = x | Y = y) = pX ,Y (x ,y)/pY (y);
I (conditional PDF) fX |Y (x | y) := fX ,Y (x ,y)/fY (y).

Conditional Distributions

The Law of Total Probability has analogues for RVs too.
I (X is Z-valued, Y is Z-valued)

pX (x) = ∑∞
y=−∞ pX ,Y (x ,y) = ∑∞

y=−∞ pY (y)pX |Y (x | y).
I (X is Z-valued, Y is continuous)

pX (x) =
∫ ∞
−∞ fY (y)pX |Y (x | y)dy

I (X is continuous, Y is Z-valued)
fX (x) = ∑∞

y=−∞ pY (y)fX |Y (x | y)

I (X is continuous, Y is continuous)
fX (x) =

∫ ∞
−∞ fX ,Y (x ,y)dy =

∫ ∞
−∞ fY (y)fX |Y (x | y)dy

Finding the probability of an event by conditioning on X :
I (X is Z-valued) P(A) = ∑∞

x=−∞ pX (x)P(A | X = x)

I (X is continuous) P(A) =
∫ ∞
−∞ fX (x)P(A | X = x)dx

Bayes Rule for RVs

X is Z-valued, Y is Z-valued:

pX |Y (x | y) =
pX (x)pY |X (y | x)

pY (y)
=

pX (x)pY |X (y | x)

∑∞
x ′=−∞ pX (x ′)pY |X (y | x ′)

X is Z-valued, Y is continuous:

pX |Y (x | y) =
pX (x)fY |X (y | x)

fY (y)
=

pX (x)fY |X (y | x)

∑∞
x ′=−∞ pX (x ′)fY |X (y | x ′)

X is continuous, Y is Z-valued:

fX |Y (x | y) =
fX (x)pY |X (y | x)

pY (y)
=

fX (x)pY |X (y | x)
∫ ∞
−∞ fX (x ′)pY |X (y | x ′)dx ′

X is continuous, Y is continuous:

fX |Y (x | y) =
fX (x)fY |X (y | x)

fY (y)
=

fX (x)fY |X (y | x)
∫ ∞
−∞ fX (x ′)fY |X (y | x ′)dx ′

Expectation

For a random variable X , the expectation of X , E[X ], is:
I (discrete, X is Z-valued) E[X ] = ∑∞

x=−∞ xpX (x);
I (continuous) E[X ] =

∫ ∞
−∞ xfX (x)dx .

I Interpretation: What is the center of mass of the
PMF/PDF?

What about a function of X , such as E[X 2]?
I Say X is continuous. By the definition,

E[X 2] =
∫ ∞
−∞ xfX 2(x)dx . What is fX 2?

I Easier way: E[g(X )] is ∑∞
x=−∞ g(x)pX (x), or∫ ∞

−∞ g(x)fX (x)dx .

Linearity of expectation: E[X + Y ] = E[X ] +E[Y ], always.
Independence is not required!



Expectation

Tail Sum Formula: If X ≥ 0 (shorthand for P(X ≥ 0) = 1), then:
I E[X ] =

∫ ∞
0 P(X ≥ x)dx =

∫ ∞
0 P(X > x)dx (always holds).

I If X is N-valued, then
E[X ] = ∑∞

x=1P(X ≥ x) = ∑∞
x=0P(X > x).

I The second version can be derived from the first version
(think about it).

Conditional expectation: For an event A,
I (discrete, X is Z-valued)

E[X | A] = ∑∞
x=−∞ xpX |A(x) = ∑∞

x=−∞ xP(X = x | A);
I (continuous) E[X | A] =

∫ ∞
−∞ xfX |A(x)dx .

Covariance, Variance
For random variables X and Y , the covariance is
cov(X ,Y ) := E[(X −E[X ])(Y −E[Y ])] = E[XY ]−E[X ]E[Y ].
I Fact: If X and Y are independent, then E[XY ] = E[X ]E[Y ],

i.e., cov(X ,Y ) = 0.
I Warning: If cov(X ,Y ) = 0, then X and Y are not

necessarily independent.

Then, the variance is
varX := cov(X ,X ) = E[(X −E[X ])2] = E[X 2]−E[X ]2.
I Interpretation: How spread out is the distribution of X?
I Variance of sum: var(X + Y ) = varX + varY + 2cov(X ,Y ).

Similar to (a + b)2 = a2 + b2 + 2ab.
I Generally, var(cX ) = c2 varX and

var ∑n
i=1 Xi = ∑n

i=1 varXi + ∑i ,j∈{1,...,n}, i 6=j cov(Xi ,Xj).
I So if X1, . . . ,Xn are independent, var ∑n

i=1 Xi = ∑n
i=1 varXi .

Indicators

For an event A, the indicator random variable 1A is the random
variable such that 1A(ω) = 1 if ω ∈ A, and 1A(ω) = 0 if ω /∈ A.
I Fact: A and B are independent if and only if 1A and 1B are

independent as RVs.
I Since 1A takes values in {0,1}, then raising 1A to any

power does not change it: 1n
A = 1A.

I E[1A] = P(A) and var1A = P(A)[1−P(A)].
I Product of indicators: 1A1B = 1A∩B.

Indicator method for calculating expectation/variance:
I If the random variable X counts the number of

occurrences, write X as the sum of indicator RVs.
I Example: Pick a permutation of {1, . . . ,n} uniformly at

random; X is the number of fixed points. For i = 1, . . . ,n,
Xi indicates if the i th position is fixed, so X = ∑n

i=1 Xi .

Discrete Distributions Reference

Bernoulli(p) (p ∈ [0,1]):
I Same as Binomial(1,p).

Binomial(n,p) (n ∈ Z+, p ∈ [0,1]):
I PMF: pX (x) =

(n
x

)
px (1−p)n−x for x ∈ {0,1, . . . ,n}.

I E[X ] = np, varX = np(1−p).
Geometric(p) (p ∈ (0,1]):
I PMF: pX (x) = p(1−p)x−1 for x ∈ Z+.
I E[X ] = 1/p, varX = (1−p)/p2.

Poisson(λ ) (λ ∈ (0,∞)):
I PMF: pX (x) = exp(−λ )λ x/x! for x ∈ N.
I E[X ] = λ , varX = λ .

Continuous Distributions Reference

Uniform([a,b]) (−∞ < a < b < ∞):
I PDF: fX (x) = 1/(b−a) for x ∈ [a,b].
I E[X ] = (a + b)/2, varX = (b−a)2/12.

Exponential(λ ) (λ ∈ (0,∞)):
I PDF: fX (x) = λ exp(−λx) for x ≥ 0.
I E[X ] = 1/λ , varX = 1/λ 2.

Normal(µ,σ2) (µ ∈ R, σ2 ≥ 0):

I PDF: fX (x) = (2πσ2)
−1/2

exp[−(x−µ)2/(2σ2)].
I E[X ] = µ, varX = σ2.

Notes on Distributions
Binomial(n,p): Models the number of successes in n
independent trials, if each success has probability p.
I X is the sum of n i.i.d. Bernoulli(p).

Geometric(p): Models the number of flips needed to get Heads,
with a coin of bias p.
I Memoryless: For k ,n ∈ Z+, pX |{X>n}(n + k) = pX (k).

Poisson(λ ): Models rare events.
I Independent Poisson(λ ) + Poisson(µ) = Poisson(λ + µ).
I For i = 1, . . . ,n, if Xi ∼ Bernoulli(λ/n), then ∑n

i=1 Xi is
approximately Poisson(λ ) for large n.

Exponential(λ ): Models radioactive decay.
I Memoryless: For s, t ∈ R, P(X > s + t | X > s) = P(X > t).

Normal(µ,σ2): Models noise/sum of i.i.d. effects.
I Sum of independent Normal(µ1,σ2

1 ) and Normal(µ2,σ2
2 ) is

Normal(µ1 + µ2,σ2
1 + σ2

2 ).



Some Important Problems (Brief Solutions)

Birthday problem: Throw k balls into n bins, independently and
uniformly at random. What is the probability of no collisions?
I Answer: (1−1/n)(1−2/n) · · ·(1− (k −1)/n).
I Approximation:
≈ exp(−1/n)exp(−2/n) · · ·exp(−(k −1)/n)≈ exp(−k2/n).

Indicators: Pick a permutation of {1, . . . ,n} uniformly at random.
Let X be the number of fixed points. What are E[X ] and varX?
I Use indicators. E[X ] = varX = 1.

Coupon collector: Each time you buy a box, you get one of n
coupons independently and uniformly at random. Expected
number of boxes needed to collect all coupons?
I Let Xi be the time to get the i th new coupon;

Xi ∼Geometric((n− (i−1))/n).
I By linearity of expectation, E[X ] = n∑n

i=1 i−1 ≈ n lnn.

Some Important Problems (Brief Solutions)
Sum of independent Poisson: X ∼ Poisson(λ ), Y ∼ Poisson(µ)
are independent; show X + Y ∼ Poisson(λ + µ).
I Key idea: Use Law of Total Probability.
I For k ∈ N, P(X + Y = k) = ∑k

x=0P(X = x ,Y = k −x) =

∑k
x=0P(X = x)P(Y = k −x). Work through the algebra.

Lunch meeting: A and B independently arrive uniformly in the
interval [0,1]; they will eat together if they arrive within 0.25 of
each other. What is the probability they eat together?
I Key idea: Draw a diagram!

(X ,Y ) is uniformly distributed on the unit square; the
probability is the shaded area (9/16).

Inequalities, Weak Law of Large Numbers

Markov’s Inequality:
I If X ≥ 0, then for t > 0, P(X ≥ t)≤ E[X ]/t .

Chebyshev’s Inequality:
I For ε > 0, P(|X −E[X ]| ≥ ε)≤ (varX )/ε2.
I |X −E[X ]| ≥ ε means X is at least ε-far from its mean; X

does not belong to (E[X ]− ε,E[X ] + ε).
Weak Law of Large Numbers (WLLN):
I Suppose X1, . . . ,Xn are i.i.d., mean µ, variance σ2. Define

the sample mean X̄n := (∑n
i=1 Xi)/n.

I Quick check: is X̄n the same as µ? No, X̄n is a random
variable! It depends on X1, . . . ,Xn!

I Calculate: E[X̄n] = µ and var X̄n = σ2/n.
I Variance shrinks with n. By Chebyshev,

P(|X̄n−µ| ≥ ε)→ 0 as n→ ∞.

Weak Law of Large Numbers

What is the interpretation of the WLLN?
I Take an ε-wide interval around µ. As n→ ∞, all of the

probability mass enters this interval.
I The distribution of X̄n becomes more and more sharply

peaked around µ.
I When n is very large, X̄n is almost a constant (almost

exactly µ).
What is the use of the WLLN?
I Suppose we do not know µ.
I If we collect enough samples (n is large), then X̄n is

basically the same thing as µ.

Confidence Intervals

Given n samples and δ > 0, a 1−δ confidence interval for µ is
a random interval (X̄n− ε, X̄n + ε) so that with probability
≥ 1−δ , µ lies in the interval.

Say what?
I n: The number of samples taken.
I δ : The probability that the confidence interval fails.
I ε: The tolerance, or width, of the confidence interval.
I Need P(µ /∈ (X̄n− ε, X̄n + ε)) = P(|X̄n−µ| ≥ ε)≤ δ .
I You will be given two out of the three: n, δ , ε. Solve for the

quantity you are not given.

Central Limit Theorem

From the WLLN, we know that if we add X1, . . . ,Xn and divide
by n, then we lose almost all information about the distribution:
for large n, (∑n

i=1 Xi)/n is basically a constant, µ.

Can we choose a different scaling to retain more information
about the distribution?
I Sum the centered RVs: ∑n

i=1(Xi −µ).
I Scale by n−1/2: Zn := n−1/2 ∑n

i=1(Xi −µ).
I Central Limit Theorem (CLT): As n→ ∞, Zn converges in

distribution to Normal(0,σ2), in the sense that

P(Zn ≤ z)→
∫ z

−∞

1√
2πσ2

exp
(
− x2

2σ2

)
dx .



Finite-State Markov Chains

What is a Markov chain?
I Is it the transition probability matrix P? No!

A Markov chain is a sequence of RVs (Xn)n∈N taking values in a
finite state space S, satisfying the Markov property.

Markov Property: For all n ∈ N and feasible sequences of
states i0, i1, . . . , in−1, i , j ,

P(Xn+1 = j | Xn = i ,Xn−1 = in−1, . . . ,X1 = i1,X0 = i0)

does not depend on i0, i1, . . . , in−1 and n.
I “Not depending on n” is time-homogeneity.
I We call this quantity P(i , j) and we put it in the (i , j) entry of

an |S|× |S| transition probability matrix P.

Distribution of a Markov Chain

The distribution of X0 is called the initial distribution.
I To discuss the distributions of (Xn)n∈N, we use different

notation. For all n ∈ N and i ∈ S, πn(i) := P(Xn = i).
I We think of πn as a row vector (of length |S|).
I Quick quiz: is πn a random variable? No!

Transition of distribution:
I In matrix notation, π1 = π0P.
I Hitting the distribution vector by the transition matrix

advances the dynamics by one step!
I Then, πn = π0Pn.

First Step Equations

Hitting time: What is the expected time to hit state j ∈ S?
I For i ∈ S, define β (i) := E[steps to hit j | X0 = i].
I Boundary condition: β (j) = 0.
I For i 6= j ,

β (i) = 1 + ∑k∈S P(i ,k)β (k) = ∑k∈S P(i ,k)[β (k) + 1].
I This is a system of linear equations which we can solve.
I If we start from initial distribution π0, the answer is

∑i∈S π0(i)β (i).
Probability of hitting A before B: Let A,B ⊆ S. What is the
probability of hitting A before B?
I For i ∈ S, define α(i) := P(hit A before B | X0 = i).
I Boundary conditions: α(i) = 0 for i ∈ B; α(i) = 1 for i ∈ A.
I For i ∈ S \ (A∪B), then α(i) = ∑k∈S P(i ,k)α(k).
I Again, solve the system of linear equations.

Classification of States

Figure: Figure taken from Introduction to Probability by Bertsekas and
Tsitsiklis, 2nd edition.

A class is a set of states in which every state can talk to any
other state.
I A class is recurrent if it only has arrows pointing inwards.
I A class is transient if it has arrows pointing to other

classes.

The probability mass “leaks out of” transient classes and
remains in recurrent classes. Therefore, only recurrent classes
matter for long-term Markov chain behavior.

Long-Run Behavior: Stationarity

A Markov chain with exactly one recurrent class (no transient
classes) is called irreducible.
I These are the simplest building blocks for analyzing

long-term behavior of a Markov chain.

Stationary distribution: The probability distribution π (a row
vector) is called a stationary (or invariant) distribution if π = πP.

I If the initial distribution is π, then the distribution remains π
for all time.

I The equation π = πP is a system of linear equations, the
balance equations, which can be solved for π.

I Every Markov chain has at least one stationary distribution.
I If the Markov chain is irreducible, the stationary distribution

is unique.

Long-Run Behavior: Convergence
MC Law of Large Numbers: If (Xn)n∈N is an irreducible MC,
then for any state i ∈ S and any π0, n−1 ∑n−1

m=01{Xm=i} converges,
as n→ ∞, to π(i), where π is the stationary distribution.
I Interpretation: The fraction of time spent in state i

converges to π(i).
I Quick quiz: is n−1 ∑n−1

m=01{Xm=i} a RV? Yes, it depends on
X0,X1, . . . ,Xn−1.

I Convergence occurs in the sense that for all ε > 0,
P(|n−1 ∑n−1

m=01{Xm=i}−π(i)| ≥ ε)→ 0 as n→ ∞.
I One consequence: If we take expectations,

n−1 ∑n−1
m=0P(Xm = i) = n−1 ∑n−1

m=0 πm(i) converges to π(i).

In other words, the average of the distributions over the first n
time steps, n−1 ∑n−1

m=0 πm, converges to π.

Do the distributions themselves converge?



Long-Run Behavior: Convergence

Aperiodicity:
I An MC is periodic it can be grouped into d > 1 groups of

states such that each group only flows into the next group.
I Otherwise, it is aperiodic.
I If the MC has a self-loop, it is aperiodic.

MC Convergence Theorem: If the MC (Xn)n∈N is irreducible
and aperiodic, then πn→ π as n→ ∞. In other words,
P(Xn = i)→ π(i) as n→ ∞ for every i ∈ S.
I The theorem holds, regardless of the initial distribution π0.
I If the chain is periodic, then convergence can still happen

for some initial distributions.

Next Lectures

The next two lectures will cover applications of discrete
mathematics and probability theory.

These lectures will not be covered on the final, so they are
optional.

Nevertheless, they may still help you practice the concepts of
discrete math/probability.


