Discrete Mathematics Review

logic, proofs

induction

graph theory

modular arithmetic, RSA
polynomials, error correction
countability, computability
counting

vVvvyVvVvVvVvyyypy

Set Notation

Basic notation: €, C, U, N.

Set Notation

Basic notation: €, C, U, n.
» To prove set equality A= B, show AC B and B C A.

Set Notation

Basic notation: €, C, U, n.
» To prove set equality A= B, show AC B and B C A.
» To prove A C B, show that for each a € A, then a € B also.

Set Notation

Basic notation: €, C, U, n.
» To prove set equality A= B, show AC B and B C A.
» To prove A C B, show that for each a € A, then a € B also.
» {0,1} is the set containing the two elements 0 and 1.

Set Notation

Basic notation: €, C, U, n.
» To prove set equality A= B, show AC B and B C A.
» To prove A C B, show that for each a € A, then a € B also.
» {0,1} is the set containing the two elements 0 and 1.
» [0,1] is the closed interval containing all x with 0 < x <1.

Set Notation

Basic notation: €, C, U, n.
» To prove set equality A= B, show AC B and B C A.
To prove A C B, show that for each a € A, then a € B also.

>

» {0,1} is the set containing the two elements 0 and 1.

» [0,1] is the closed interval containing all x with 0 < x <1.
>

(0,1) is the open interval containing all x with 0 < x <1, or
it is the ordered tuple containing 0 and 1 (context).

Set Notation

Basic notation: €, C, U, n.
» To prove set equality A= B, show AC B and B C A.
» To prove A C B, show that for each a € A, then a € B also.
» {0,1} is the set containing the two elements 0 and 1.
» [0,1] is the closed interval containing all x with 0 < x <1.
>

(0,1) is the open interval containing all x with 0 < x <1, or
it is the ordered tuple containing 0 and 1 (context).

» Cartesian product: A x B is the set of all pairs (a, b) where
acAandbecB.

Set Notation

Basic notation: €, C, U, n.
» To prove set equality A= B, show AC B and B C A.
» To prove A C B, show that for each a € A, then a € B also.
» {0,1} is the set containing the two elements 0 and 1.
» [0,1] is the closed interval containing all x with 0 < x <1.
>

(0,1) is the open interval containing all x with 0 < x <1, or
it is the ordered tuple containing 0 and 1 (context).

» Cartesian product: A x B is the set of all pairs (a, b) where
acAandbeB.
{0,1} x {A,B} ={(0,A),(0,B),(1,A),(1,B)}.

Set Notation

Basic notation: €, C, U, n.
» To prove set equality A= B, show AC B and B C A.
» To prove A C B, show that for each a € A, then a € B also.
» {0,1} is the set containing the two elements 0 and 1.
» [0,1] is the closed interval containing all x with 0 < x <1.
>

(0,1) is the open interval containing all x with 0 < x <1, or
it is the ordered tuple containing 0 and 1 (context).

» Cartesian product: A x B is the set of all pairs (a, b) where
acAandbeB.
{0,1} x {A,B} ={(0,A),(0,B),(1,A),(1,B)}.

» We define sets like so: {x € S: conditions on x}.

Set Notation

Basic notation: ¢, C, U, N.

>

>
| 4
>
>

>

To prove set equality A= B, show AC Band BC A.

To prove A C B, show that for each a € A, then a € B also.
{0,1} is the set containing the two elements 0 and 1.
[0,1] is the closed interval containing all x with 0 < x <1.

(0,1) is the open interval containing all x with 0 < x <1, or
it is the ordered tuple containing 0 and 1 (context).
Cartesian product: A x B is the set of all pairs (a, b) where
acAandbeB.

{0,1} x {A,B} ={(0,A),(0,B),(1,A),(1,B)}.

We define sets like so: {x € S: conditions on x}. This is
the set of all elements in S satisfying the stated conditions.

Set Notation

Basic notation: ¢, C, U, N.

>

>
| 4
>
>

>

To prove set equality A= B, show AC Band BC A.

To prove A C B, show that for each a € A, then a € B also.
{0,1} is the set containing the two elements 0 and 1.
[0,1] is the closed interval containing all x with 0 < x <1.

(0,1) is the open interval containing all x with 0 < x <1, or
it is the ordered tuple containing 0 and 1 (context).
Cartesian product: A x B is the set of all pairs (a, b) where
acAandbeB.

{0,1} x {A,B} ={(0,A),(0,B),(1,A),(1,B)}.

We define sets like so: {x € S: conditions on x}. This is
the set of all elements in S satisfying the stated conditions.

{(xeN:2<x<7}=1{2,3,4,5,6,7}.

Propositional Logic

Language of propositional logic: given propositions P, Q,

Propositional Logic

Language of propositional logic: given propositions P, Q,
> negate a proposition: —P;

Propositional Logic
Language of propositional logic: given propositions P, Q,
> negate a proposition: —P;
» combine propositions: PV Q, PAQ,P —= Q, P < Q.

Propositional Logic

Language of propositional logic: given propositions P, Q,

> negate a proposition: —P;

» combine propositions: PV Q, PAQ,P = Q, P <= Q.
To answer questions in propositional logic, use truth tables.

Propositional Logic

Language of propositional logic: given propositions P, Q,
> negate a proposition: —P;
» combine propositions: PV Q, PAQ,P —= Q, P < Q.

To answer questions in propositional logic, use truth tables. Or,
use logical equivalences (e.g., De Morgan).

Propositional Logic
Language of propositional logic: given propositions P, Q,
> negate a proposition: —P;
» combine propositions: PV Q, PAQ,P —= Q, P < Q.

To answer questions in propositional logic, use truth tables. Or,
use logical equivalences (e.g., De Morgan).

Midterm question: given a truth table

P Q PaQ
T T F
T F T
FT T
FF F

can you write an equivalent sentence using P, Q, -, A, V?

Propositional Logic
Language of propositional logic: given propositions P, Q,
> negate a proposition: —P;
» combine propositions: PV Q, PAQ,P —= Q, P < Q.

To answer questions in propositional logic, use truth tables. Or,
use logical equivalences (e.g., De Morgan).

Midterm question: given a truth table

P Q PaQ
T T F
T F T
FT T
FF F

can you write an equivalent sentence using P, Q, -, A, V?
» Answer: (PA=Q)V (=PAQ).

First-Order Logic

First-order logic introduces quantifiers: v, 3.

First-Order Logic

First-order logic introduces quantifiers: vV, 3. Now we need
more than truth tables; we need semantic proofs.

First-Order Logic

First-order logic introduces quantifiers: vV, 3. Now we need
more than truth tables; we need semantic proofs.

Recall the intuition:

First-Order Logic

First-order logic introduces quantifiers: v, 3. Now we need
more than truth tables; we need semantic proofs.

Recall the intuition:
> Y is a way to write infinite “AND”s;

First-Order Logic

First-order logic introduces quantifiers: v, 3. Now we need
more than truth tables; we need semantic proofs.

Recall the intuition:
> Vis a way to write infinite “AND”s;
» Jis a way to write infinite “OR”s.

First-Order Logic

First-order logic introduces quantifiers: v, 3. Now we need
more than truth tables; we need semantic proofs.

Recall the intuition:
> Vis a way to write infinite “AND”s;
» Jis a way to write infinite “OR”s.

Recall De Morgan: —Vx P(x) = 3x —~P(x) and
—3x P(x) = Vx =P(x).

First-Order Logic

First-order logic introduces quantifiers: v, 3. Now we need
more than truth tables; we need semantic proofs.

Recall the intuition:
> Vis a way to write infinite “AND”s;
» Jis a way to write infinite “OR”s.

Recall De Morgan: —Vx P(x) = 3x —~P(x) and
—3x P(x) = Vx =P(x).

Question for review: is Yx Jy P(x,y) =3y Vx P(x,y)?

First-Order Logic

First-order logic introduces quantifiers: v, 3. Now we need
more than truth tables; we need semantic proofs.

Recall the intuition:
> Vis a way to write infinite “AND”s;
» Jis a way to write infinite “OR”s.

Recall De Morgan: —Vx P(x) = 3x —~P(x) and
—3x P(x) = Vx =P(x).

Question for review: is Yx Jy P(x,y) =3y Vx P(x,y)?
» No; P(x,y) ="“x loves y”.

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(UL1 A) S XL P(A)?

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(UL; A) < X4 P(A)?
» Base cases: n= 1 obvious; n=2 is given above.

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(UL{ A)) <YL P(A)?
> Base cases: n=1 obvious; n= 2 is given above.
» Inductive step: Assume P(n).

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(UL4 A)) S XL P(A)?
> Base cases: n=1 obvious; n= 2 is given above.
» Inductive step: Assume P(n). Prove P(n+1).

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(ULy A)) ST P(A)?
» Base cases: n= 1 obvious; n=2 is given above.
» Inductive step: Assume P(n). Prove P(n+1).
> Let Aq,...,An1 be events.

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(UL4 A)) S XL P(A)?
> Base cases: n=1 obvious; n= 2 is given above.
» Inductive step: Assume P(n). Prove P(n+1).

> Let Aq,...,An 1 be events. Then,
P(U A) =P((ULL1 A) U Ani1) < P(URLy A)) +P(Anis).

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(UL{ A)) <YL P(A)?
> Base cases: n=1 obvious; n= 2 is given above.
» Inductive step: Assume P(n). Prove P(n+1).
> Let Aq,...,An 1 be events. Then,
PUTH A = P((ULLy A) U A1) < P(UL1 A) +P(Ani1).
» Apply inductive hypothesis.

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(UL4 A)) S XL P(A)?
> Base cases: n=1 obvious; n= 2 is given above.
» Inductive step: Assume P(n). Prove P(n+1).
> Let Aq,...,An 1 be events. Then,
PUTH A = P((ULLy A) U A1) < P(UL1 A) +P(Ani1).
» Apply inductive hypothesis. P(U7_4A;) <Y1 P(A).

Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(UL{ A)) <YL P(A)?

> Base cases: n=1 obvious; n= 2 is given above.

» Inductive step: Assume P(n). Prove P(n+1).

> Let Aq,...,An 1 be events. Then,
P(UT A) =P((UL1 A) UAnp1) < P(ULy A) +P(Anss).
Apply inductive hypothesis. P(Uj_; Aj) < X7 P(A)).
So, P(UT Aj) < X4 P(A).

vy

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).

Other Forms of Induction
Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).

» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles.

Other Forms of Induction
Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).

» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles. Get stuck at the inductive step!

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).
» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles. Get stuck at the inductive step!

» Instead, tile a 2" x 2" grid with any square missing.

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).
» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles. Get stuck at the inductive step!
» Instead, tile a 2" x 2" grid with any square missing.

» Use this when your inductive hypothesis does not give you
enough information.

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).
» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles. Get stuck at the inductive step!
» Instead, tile a 2" x 2" grid with any square missing.

» Use this when your inductive hypothesis does not give you
enough information.

Strong induction: During inductive step, you can use
P(0),P(1),...,P(n) to help you prove P(n+1).

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).
» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles. Get stuck at the inductive step!
» Instead, tile a 2" x 2" grid with any square missing.
» Use this when your inductive hypothesis does not give you
enough information.
Strong induction: During inductive step, you can use
P(0),P(1),...,P(n) to help you prove P(n+1).
» This is needed when you reduce, not just to the previous
case P(n), but to an even smaller case.

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).

» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles. Get stuck at the inductive step!

» Instead, tile a 2" x 2" grid with any square missing.

» Use this when your inductive hypothesis does not give you
enough information.

Strong induction: During inductive step, you can use
P(0),P(1),...,P(n) to help you prove P(n+1).
» This is needed when you reduce, not just to the previous
case P(n), but to an even smaller case.

Well ordering principle: Every non-empty subset of N has a
least element.

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).
» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles. Get stuck at the inductive step!
» Instead, tile a 2" x 2" grid with any square missing.

» Use this when your inductive hypothesis does not give you
enough information.

Strong induction: During inductive step, you can use
P(0),P(1),...,P(n) to help you prove P(n+1).
» This is needed when you reduce, not just to the previous
case P(n), but to an even smaller case.

Well ordering principle: Every non-empty subset of N has a
least element.

» Consider the least counterexample;

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).
» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles. Get stuck at the inductive step!
» Instead, tile a 2" x 2" grid with any square missing.

» Use this when your inductive hypothesis does not give you
enough information.
Strong induction: During inductive step, you can use
P(0),P(1),...,P(n) to help you prove P(n+1).
» This is needed when you reduce, not just to the previous
case P(n), but to an even smaller case.

Well ordering principle: Every non-empty subset of N has a
least element.

» Consider the least counterexample; prove there is an even
smaller counterexample!

Graph Theory

A graph is a set of vertices V and a set of edges E.

Graph Theory

A graph is a set of vertices V and a set of edges E.

Recall definitions: degree, connectedness.

Graph Theory

A graph is a set of vertices V and a set of edges E.

Recall definitions: degree, connectedness. Types of graphs:
trees, forests, planar, bipartite, complete, hypercubes.

Graph Theory

A graph is a set of vertices V and a set of edges E.

Recall definitions: degree, connectedness. Types of graphs:
trees, forests, planar, bipartite, complete, hypercubes.

Confusing terminology: paths, walks, cycles, tours?

Graph Theory

A graph is a set of vertices V and a set of edges E.

Recall definitions: degree, connectedness. Types of graphs:
trees, forests, planar, bipartite, complete, hypercubes.

Confusing terminology: paths, walks, cycles, tours?

repeats vertices/edges? must return to start?

path no no
walk possibly no
cycle no yes

tour possibly yes

Graph Theory Results
Handshaking Lemma: ¥ ,c degv = 2|E]|.

Graph Theory Results

Handshaking Lemma: ¥ ,c degv = 2|E]|.

» Example: For Kj,, n(n—1) =2|E|, so
|E|=n(n-1)/2=(3).

Graph Theory Results

Handshaking Lemma: ¥ ,c degv = 2|E]|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:
» Connected and acyclic;

Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges.

Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges. Smallest connected graphs!

Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges. Smallest connected graphs!

» Trees are planar.

Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges. Smallest connected graphs!

» Trees are planar.
Hypercubes:

> Vertices consist of length-d bit strings; two vertices are
adjacent iff they differ in one bit.

Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges. Smallest connected graphs!

» Trees are planar.
Hypercubes:
> Vertices consist of length-d bit strings; two vertices are
adjacent iff they differ in one bit.

» Hypercubes are bipartite and have Hamiltonian cycles
(visit each vertex exactly once).

Planarity

Planarity: can be drawn on a plane without edge crossings.

Planarity

Planarity: can be drawn on a plane without edge crossings.
» We only discussed connected planar graphs.

Planarity

Planarity: can be drawn on a plane without edge crossings.
» We only discussed connected planar graphs.
» Eulers formula: v+f=e+2.

Planarity

Planarity: can be drawn on a plane without edge crossings.
» We only discussed connected planar graphs.
» Eulers formula: v+f=e+2.
» For | V| > 3, this gives e < 3v —6.

Planarity

Planarity: can be drawn on a plane without edge crossings.
» We only discussed connected planar graphs.
» Eulers formula: v+f=e+2.
» For | V| > 3, this gives e < 3v —6.
» Important non-planar graphs: Ks 3, Ks.

Planarity

Planarity: can be drawn on a plane without edge crossings.
» We only discussed connected planar graphs.
» Eulers formula: v+f=e+2.
» For | V| > 3, this gives e < 3v —6.
» Important non-planar graphs: Ks 3, Ks.
» Every planar graph has a dual planar graph.

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

» Use induction on the number of vertices.

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

» Use induction on the number of vertices.
> Base case: A graph with one vertex only needs one color.

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

» Use induction on the number of vertices.
> Base case: A graph with one vertex only needs one color.

» Inductive hypothesis: Any graph H with n vertices can be
colored with dmnax(H)+ 1 colors.

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

» Use induction on the number of vertices.
> Base case: A graph with one vertex only needs one color.

» Inductive hypothesis: Any graph H with n vertices can be
colored with dmnax(H)+ 1 colors.

» Consider a graph G with n+ 1 vertices.

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

» Use induction on the number of vertices.

> Base case: A graph with one vertex only needs one color.

» Inductive hypothesis: Any graph H with n vertices can be
colored with dmnax(H)+ 1 colors.

» Consider a graph G with n+ 1 vertices. Remove a vertex
and its associated edges from G to form a graph G'.

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

» Use induction on the number of vertices.
> Base case: A graph with one vertex only needs one color.

» Inductive hypothesis: Any graph H with n vertices can be
colored with dmnax(H)+ 1 colors.

» Consider a graph G with n+ 1 vertices. Remove a vertex
and its associated edges from G to form a graph G'.

» G’ has nvertices, and dmax(G') < Amax(G).

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

>
>
>

Use induction on the number of vertices.
Base case: A graph with one vertex only needs one color.

Inductive hypothesis: Any graph H with n vertices can be
colored with dmnax(H)+ 1 colors.

Consider a graph G with n+ 1 vertices. Remove a vertex
and its associated edges from G to form a graph G'.

G’ has nvertices, and dmax(G') < dnax(G). Apply
inductive hypothesis to color G’ with < dj,.x(G) + 1 colors.

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

>
>
>

Use induction on the number of vertices.
Base case: A graph with one vertex only needs one color.

Inductive hypothesis: Any graph H with n vertices can be
colored with dmnax(H)+ 1 colors.

Consider a graph G with n+ 1 vertices. Remove a vertex
and its associated edges from G to form a graph G'.

G’ has nvertices, and dmax(G') < dnax(G). Apply
inductive hypothesis to color G’ with < dj,.x(G) + 1 colors.
Add the vertex and edges back to G’ to form G.

Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

>
>
>

Use induction on the number of vertices.

Base case: A graph with one vertex only needs one color.
Inductive hypothesis: Any graph H with n vertices can be
colored with dmnax(H)+ 1 colors.

Consider a graph G with n+ 1 vertices. Remove a vertex
and its associated edges from G to form a graph G'.

G’ has nvertices, and dmax(G') < dnax(G). Apply
inductive hypothesis to color G’ with < dj,.x(G) + 1 colors.
Add the vertex and edges back to G’ to form G.

Since the vertex has < dnax(G) neighbors, color it using
color dnax(G) +1.

Modular Arithmetic

For a positive integer m > 2, say two numbers x,y € Z are
equivalent modulo m, x =y (mod m),if m|x—y.

Modular Arithmetic

For a positive integer m > 2, say two numbers x,y € Z are
equivalent modulo m, x =y (mod m),if m|x—y.

If a=b (mod m)and c=d (mod m), then we can add and
multiply these equations as normal:

a+c=b+d (mod m), ac=bd (mod m).

Modular Arithmetic

For a positive integer m > 2, say two numbers x,y € Z are
equivalent modulo m, x =y (mod m),if m|x—y.

If a=b (mod m)and c=d (mod m), then we can add and
multiply these equations as normal:

a+c=b+d (mod m), ac=bd (mod m).

Every x € Z is equivalent to exactly one of {0,1,...,m—1}.

Modular Arithmetic

For a positive integer m > 2, say two numbers x,y € Z are
equivalent modulo m, x =y (mod m),if m|x—y.

If a=b (mod m)and c=d (mod m), then we can add and
multiply these equations as normal:

a+c=b+d (mod m), ac=bd (mod m).

Every x € Z is equivalent to exactly one of {0,1,...,m—1}.
So, we let Z/mZ ={0,1,...,m—1} be its own number system,
with addition and multiplication defined modulo m.

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.

> f:7Z/mZ — 7Z/mZ defined by f(x) := ax is a bijection.

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.

> f:7Z/mZ — 7Z/mZ defined by f(x) := ax is a bijection.
» gcd(a,m)=1.

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.

> f:7Z/mZ — 7Z/mZ defined by f(x) := ax is a bijection.
» gcd(a,m)=1.
If a satisfies the three statements above, then we say
ac(Z/mz)*.

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.

> f:7Z/mZ — 7Z/mZ defined by f(x) := ax is a bijection.
» gcd(a,m)=1.
If a satisfies the three statements above, then we say
ac(Z/mz)*.

When p is prime, then (Z/pZ)* = {1,...,p—1}.

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:
» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.
> f:7Z/mZ — 7Z/mZ defined by f(x) := ax is a bijection.
» gcd(a,m)=1.
If a satisfies the three statements above, then we say
ac(Z/mz)*.

When p is prime, then (Z/pZ)* = {1,...,p—1}. Every
non-zero element has a multiplicative inverse.

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.

> f:7Z/mZ — 7Z/mZ defined by f(x) := ax is a bijection.
» gcd(a,m)=1.
If a satisfies the three statements above, then we say
ac(Z/mz)*.

When p is prime, then (Z/pZ)* = {1,...,p—1}. Every
non-zero element has a multiplicative inverse.

Extended Euclid’s algorithm: given a,m € Z, m # 0, output
X,y € Z such that ax + my = gcd(a, m).

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.

> f:7Z/mZ — 7Z/mZ defined by f(x) := ax is a bijection.
» gcd(a,m)=1.
If a satisfies the three statements above, then we say
ac(Z/mz)*.

When p is prime, then (Z/pZ)* = {1,...,p—1}. Every
non-zero element has a multiplicative inverse.

Extended Euclid’s algorithm: given a,m € Z, m # 0, output
X,y € Z such that ax + my = gcd(a, m).

» For ac (Z/mZ)*, this gives ax +my = 1.

Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.

> f:7Z/mZ — 7Z/mZ defined by f(x) := ax is a bijection.
» gcd(a,m)=1.
If a satisfies the three statements above, then we say
ac(Z/mz)*.

When p is prime, then (Z/pZ)* = {1,...,p—1}. Every
non-zero element has a multiplicative inverse.

Extended Euclid’s algorithm: given a,m € Z, m # 0, output
X,y € Z such that ax + my = gcd(a, m).

» For ac (Z/mZ)™, this gives ax+my =1. So, x is the
multiplicative inverse of ain Z/mZ.

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.
» Square the base, halve the exponent.

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.
> Square the base, halve the exponent. 360 =930 — 8115,

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.
> Square the base, halve the exponent. 360 =930 — 8115,
» Reduce the base: 81'° =315,

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.

> Square the base, halve the exponent. 360 =930 — 8115,
» Reduce the base: 81 =315,

» For an odd exponent, pull out one power.

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.
> Square the base, halve the exponent. 360 =930 — 8115,
» Reduce the base: 81'° =315,

» For an odd exponent, puII out one power.
315 3. 314 3. 97

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.
> Square the base, halve the exponent. 360 =930 — 8115,
» Reduce the base: 81 =315,
» For an odd exponent, puII out one power.
315 3. 314 3. 97
Fermat's Little Theorem: For p prime and a € (Z/pZ)*, one has
a’'=1 (mod p).

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.

> Square the base, halve the exponent. 360 =930 — 8115,

» Reduce the base: 81 =315,

» For an odd exponent, puII out one power.

315 3. 314 3. 97

Fermat's Little Theorem: For p prime and a € (Z/pZ)*, one has
a’'=1 (mod p).

» Or, forallacZ/pZ, a° = a (mod p).

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.

> Square the base, halve the exponent. 360 =930 — 8115,

» Reduce the base: 81 =315,

» For an odd exponent, puII out one power.

315 =3. 314 3. 97

Fermat's Little Theorem: For p prime and a € (Z/pZ)*, one has
a’'=1 (mod p).

» Or, forallacZ/pZ, a° = a (mod p).

Chinese Remainder Theorem: For pairwise coprime moduli
my,...,mp and fixed ay, ..., an, the equations x = a; (mod m;)
fori=1,...,nhas a unique solution x € Z/my - -- myZ.

RSA

RSA public-key cryptosystem:

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, p and q.

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.
> Pick a publickey e (Z/(p—1)(q—1)Z)".

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.

» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.

» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.

» Public information: (N, e).

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.

» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.
» Public information: (N, e). Only the receiver knows d.

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.
» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.
» Public information: (N, e). Only the receiver knows d.

» For a message m, encrypt using E(m)=m® (mod N) and
then send.

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.
» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.
» Public information: (N, e). Only the receiver knows d.

» For a message m, encrypt using E(m)=m® (mod N) and
then send. Receiver decrypts using D(c) = ¢? (mod N).

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.
» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.
» Public information: (N, e). Only the receiver knows d.

» For a message m, encrypt using E(m)=m® (mod N) and
then send. Receiver decrypts using D(c) = ¢? (mod N).

RSA details:

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.
» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.
» Public information: (N, e). Only the receiver knows d.

» For a message m, encrypt using E(m)=m® (mod N) and
then send. Receiver decrypts using D(c) = ¢? (mod N).

RSA details:
» Correctness: Proof uses Fermat’s Little Theorem.

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.
» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.
» Public information: (N, e). Only the receiver knows d.

» For a message m, encrypt using E(m)=m® (mod N) and
then send. Receiver decrypts using D(c) = ¢? (mod N).

RSA details:
» Correctness: Proof uses Fermat’s Little Theorem.

» Efficiency: Repeated squaring, extended Euclid, Prime
Number Theorem, primality tests.

RSA

RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.
» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.
» Public information: (N, e). Only the receiver knows d.

» For a message m, encrypt using E(m)=m® (mod N) and
then send. Receiver decrypts using D(c) = ¢? (mod N).

RSA details:
» Correctness: Proof uses Fermat’s Little Theorem.

» Efficiency: Repeated squaring, extended Euclid, Prime
Number Theorem, primality tests.

» Security: Conjecturedto be secure.

Polynomials

A polynomial is of the form P(x) = agx? +--- + a1 x + a, where
d € N is the degree and ag, a1, - .., aq are the coefficients.

Polynomials

A polynomial is of the form P(x) = agx? +--- + a1 x + a, where
d € N is the degree and ag, a1, - .., aq are the coefficients.

We look at polynomials over fields.

Polynomials
A polynomial is of the form P(x) = agx? +--- + a1 x + a, where
d € N is the degree and ag, a1, - .., aq are the coefficients.

We look at polynomials over fields. Here are fields we care
about: Q, R, C, Z/pZ for p prime.

Polynomials

A polynomial is of the form P(x) = agx? +--- + a1 x + a, where
d € N is the degree and ag, a1, - .., aq are the coefficients.

We look at polynomials over fields. Here are fields we care
about: Q, R, C, Z/pZ for p prime.

Facts about polynomials in fields:

Polynomials
A polynomial is of the form P(x) = agx? +--- + a1 x + a, where
d € N is the degree and ag, a1, - .., aq are the coefficients.

We look at polynomials over fields. Here are fields we care
about: Q, R, C, Z/pZ for p prime.

Facts about polynomials in fields:
» A degree d polynomial has < d roots.

Polynomials

A polynomial is of the form P(x) = agx? +--- + a1 x + a, where
d € N is the degree and ag, a1, - .., aq are the coefficients.

We look at polynomials over fields. Here are fields we care
about: Q, R, C, Z/pZ for p prime.

Facts about polynomials in fields:
» A degree d polynomial has < d roots.

» There is a unique degree < d polynomial which passes
through any specified d + 1 distinct points.

Polynomials

A polynomial is of the form P(x) = agx? +--- + a1 x + a, where
d € N is the degree and ag, a1, - .., aq are the coefficients.

We look at polynomials over fields. Here are fields we care
about: Q, R, C, Z/pZ for p prime.

Facts about polynomials in fields:
» A degree d polynomial has < d roots.

» There is a unique degree < d polynomial which passes
through any specified d + 1 distinct points.

» Lagrange interpolation: given distinct
(X17}’1)7~--7(Xd+17}’d+1)sthen P(X) Z:jﬁ1 yl () where

Mgt a1 iy (X — X))
Mieqt, . a+ iy (i — X))

A,’(X) =

is the unique degree < d interpolating polynomial.

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.
» Similar to the definition of modular equivalence!

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.
» Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of
them are equivalent modulo x2+1?

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.
» Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of
them are equivalent modulo x2+1?

» First step: How many numbers are in Z/mZ?

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.
» Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of
them are equivalent modulo x2+1?

» First step: How many numbers are in Z/mZ?
» For x € Z, Division Algorithm gives x = gqm+r where g€ Z
and re {0,1,....m—1}.

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.
» Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of
them are equivalent modulo x2+1?

» First step: How many numbers are in Z/mZ?

» For x € Z, Division Algorithm gives x = gqm+r where g€ Z
andre{0,1,...,m—1}. So, x=r (mod m).

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.
» Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of
them are equivalent modulo x2+1?

» First step: How many numbers are in Z/mZ?

» For x € Z, Division Algorithm gives x = gqm+r where g€ Z
andre{0,1,...,m—1}. So, x=r (mod m).

> Similarly, P(x) = Q(x)(x2+1) + R(x) for polynomials Q
and R, where deg R < 2.

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.
» Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of
them are equivalent modulo x2+1?

» First step: How many numbers are in Z/mZ?

» For x € Z, Division Algorithm gives x = gqm+r where g€ Z
andre{0,1,...,m—1}. So, x=r (mod m).

> Similarly, P(x) = Q(x)(x2+1) + R(x) for polynomials Q
and R, where deg R < 2.

» So, R(x) = rix+ry for some ry, ry.

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.

>

Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of
them are equivalent modulo x2+1?

| 2
| 2

>

First step: How many numbers are in Z/mZ?

For x € Z, Division Algorithm gives x = gm-+r where g € Z
andre{0,1,...,m—1}. So, x=r (mod m).

Similarly, P(x) = Q(x)(x?+ 1) + R(x) for polynomials Q
and R, where deg R < 2.

So, R(x) = rnx+ ry for some ry, 1.

Since we are in Z/pZ, there are p choices for ry and rq, so
there are p? different non-equivalent polynomials.

Applications of Polynomials

Shamir’s secret sharing:

Applications of Polynomials

Shamir’s secret sharing:
> If k officers get together, they know the secret s € Z/pZ.

Applications of Polynomials

Shamir’s secret sharing:

» If k officers get together, they know the secret s € Z/pZ. If
< k —1 officers get together, they learn nothing.

Applications of Polynomials

Shamir’s secret sharing:
» If k officers get together, they know the secret s € Z/pZ. If
< k —1 officers get together, they learn nothing.
> Define P(x) :=sx_1X* " +...+s1x+s, where sy,...,8_1
are chosen randomly.

Applications of Polynomials

Shamir’s secret sharing:
» If k officers get together, they know the secret s € Z/pZ. If
< k —1 officers get together, they learn nothing.
> Define P(x) :=sx_1X* " +...+s1x+s, where sy,...,8_1
are chosen randomly.
» Give each officer an evaluation of the polynomial.

Applications of Polynomials

Shamir’s secret sharing:
» If k officers get together, they know the secret s € Z/pZ. If
< k —1 officers get together, they learn nothing.
> Define P(x) :=sx_1X* " +...+s1x+s, where sy,...,8_1
are chosen randomly.
» Give each officer an evaluation of the polynomial.

Reed-Solomon codes:

Applications of Polynomials

Shamir’s secret sharing:
» If k officers get together, they know the secret s € Z/pZ. If
< k —1 officers get together, they learn nothing.
> Define P(x) :=sx_1X* " +...+s1x+s, where sy,...,8_1
are chosen randomly.
» Give each officer an evaluation of the polynomial.

Reed-Solomon codes:

» Given a message (mo,my,...,mp_1), encode it as a
polynomial P(x) = mp_1x"~" +--- 4+ myx + mq.

Applications of Polynomials

Shamir’s secret sharing:

» If k officers get together, they know the secret s € Z/pZ. If
< k —1 officers get together, they learn nothing.

> Define P(x) :=sx_1X* " +...+s1x+s, where sy,...,8_1
are chosen randomly.
» Give each officer an evaluation of the polynomial.
Reed-Solomon codes:
» Given a message (mo,my,...,mp_1), encode it as a
polynomial P(x) = m,_1x" ' + -+ myx+ mq.
» Encode the message as a codeword of length /.

Applications of Polynomials

Shamir’s secret sharing:

» If k officers get together, they know the secret s € Z/pZ. If
< k —1 officers get together, they learn nothing.

> Define P(x) :=sx_1X* " +...+s1x+s, where sy,...,8_1
are chosen randomly.
» Give each officer an evaluation of the polynomial.
Reed-Solomon codes:
» Given a message (mo,my,...,mp_1), encode it as a
polynomial P(x) = m,_1x" ' + -+ myx+ mq.
» Encode the message as a codeword of length /.

» The codeword for the message is
(0,P(0)),(1,P(1)),..., (¢~ 1,P(t—1)).

Reed-Solomon Error Correction

» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.

Reed-Solomon Error Correction

» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.

» A Reed-Solomon code with codeword length ¢ = n+ 2k
can recover the message if < k packets are corrupted.

Reed-Solomon Error Correction

» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.

» A Reed-Solomon code with codeword length ¢ = n+ 2k
can recover the message if < k packets are corrupted.

» This code has minimum pairwise Hamming distance 2k + 1
= correct k general errors.

Reed-Solomon Error Correction

» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.
» A Reed-Solomon code with codeword length ¢ = n+ 2k
can recover the message if < k packets are corrupted.
» This code has minimum pairwise Hamming distance 2k + 1
= correct k general errors.

» Berlekamp-Welch: An efficient decoding scheme for
Reed-Solomon codes under corruption errors.

Reed-Solomon Error Correction

» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.
» A Reed-Solomon code with codeword length ¢ = n+ 2k
can recover the message if < k packets are corrupted.
» This code has minimum pairwise Hamming distance 2k + 1
= correct k general errors.
» Berlekamp-Welch: An efficient decoding scheme for
Reed-Solomon codes under corruption errors.
> If errors are at eq,..., ey, define
E(x) =TI (x— &) =xK+ag_1x* "+ +ajx+ap.

Reed-Solomon Error Correction

» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.
» A Reed-Solomon code with codeword length ¢ = n+ 2k
can recover the message if < k packets are corrupted.
» This code has minimum pairwise Hamming distance 2k + 1
= correct k general errors.
» Berlekamp-Welch: An efficient decoding scheme for
Reed-Solomon codes under corruption errors.
> If errors are at eq,..., ey, define
E(x) =TI (x— &) =xK+ag_1x* "+ +ajx+ap.
» Define Q(x) = P(X)E(X) = bpik_1 XK1 - 4 byx + by.

Reed-Solomon Error Correction

» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.
» A Reed-Solomon code with codeword length ¢ = n+ 2k
can recover the message if < k packets are corrupted.
» This code has minimum pairwise Hamming distance 2k + 1
= correct k general errors.
» Berlekamp-Welch: An efficient decoding scheme for
Reed-Solomon codes under corruption errors.
> If errors are at eq,..., ey, define
E(x) :Hf-‘:1(x—e,-) :x"+ak_1xk“ +---t+aix+ap.
» Define Q(x) = P(X)E(X) = bpik_1 XK1 - 4 byx + by.
» Key Lemma: If Ry, Ry,..., Rhiok_1 are the received packets,
then R;E(i) = P(i)E(i) for i=0,1,...,n+2k —1.

Reed-Solomon Error Correction

» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.

» A Reed-Solomon code with codeword length ¢ = n+ 2k
can recover the message if < k packets are corrupted.
» This code has minimum pairwise Hamming distance 2k + 1
= correct k general errors.

» Berlekamp-Welch: An efficient decoding scheme for
Reed-Solomon codes under corruption errors.

> If errors are at eq,..., ey, define
E(x) :Hf-‘:1(x— €)= x"+ak_1xk‘1 +---t+aix+ap.

» Define Q(x) = P(X)E(X) = bpik_1 XK1 - 4 byx + by.

» Key Lemma: If Ry, Ry,..., Rhiok_1 are the received packets,
then R;E(i) = P(/)E(i) fori=0,1,...,n+2k —1.

> This is a system of n+ 2k linear equations in the n+ 2k
unknowns ap, as,...,ak—1,bo,b1,...,bpik_1.

Countability

A set Sis countable if there is an injection S — N.

Countability
A set Sis countable if there is an injection S — N.
> Countable sets: N, Z, Nx N, Q.

Countability
A set Sis countable if there is an injection S — N.

» Countable sets: N, Z, Nx N, Q. Allfinite-length strings
from a countably infinite alphabet.

Countability
A set Sis countable if there is an injection S — N.

» Countable sets: N, Z, Nx N, Q. Allfinite-length strings
from a countably infinite alphabet.

» How to show a set is countable: put its elements into a list!

Countability
A set Sis countable if there is an injection S — N.

» Countable sets: N, Z, Nx N, Q. Allfinite-length strings
from a countably infinite alphabet.

» How to show a set is countable: put its elements into a list!
A set S is uncountable if it is not countable.

Countability
A set Sis countable if there is an injection S — N.

» Countable sets: N, Z, Nx N, Q. Allfinite-length strings
from a countably infinite alphabet.

» How to show a set is countable: put its elements into a list!
A set S is uncountable if it is not countable.
» Examples: R, infinite-length bit strings.

Countability
A set Sis countable if there is an injection S — N.

» Countable sets: N, Z, Nx N, Q. Allfinite-length strings
from a countably infinite alphabet.

» How to show a set is countable: put its elements into a list!
A set S is uncountable if it is not countable.

» Examples: R, infinite-length bit strings.

» How to show a set is uncountable: Cantor diagonalization.

Countability
A set Sis countable if there is an injection S — N.

» Countable sets: N, Z, Nx N, Q. Allfinite-length strings
from a countably infinite alphabet.

» How to show a set is countable: put its elements into a list!
A set S is uncountable if it is not countable.

» Examples: R, infinite-length bit strings.

» How to show a set is uncountable: Cantor diagonalization.

0 0O
o1 1

110

What infinite-length bit string is not in the list?

Countability
A set Sis countable if there is an injection S — N.

» Countable sets: N, Z, Nx N, Q. Allfinite-length strings
from a countably infinite alphabet.

» How to show a set is countable: put its elements into a list!
A set S is uncountable if it is not countable.

» Examples: R, infinite-length bit strings.

» How to show a set is uncountable: Cantor diagonalization.

0 0O
o1 1

110

What infinite-length bit string is not in the list? 101...

Countability
A set Sis countable if there is an injection S — N.

» Countable sets: N, Z, Nx N, Q. Allfinite-length strings
from a countably infinite alphabet.

» How to show a set is countable: put its elements into a list!
A set S is uncountable if it is not countable.

» Examples: R, infinite-length bit strings.

» How to show a set is uncountable: Cantor diagonalization.

0 0O
o1 1

110

What infinite-length bit string is not in the list? 101...

» Alternatively, find an injection from an uncountable set
(such as R) into the set.

Computability

Not all functions can be computed.

Computability

Not all functions can be computed.

» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.

Computability

Not all functions can be computed.
» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.

> TestHalt takes two arguments, a program P and an input
x, and returns 1 iff P(x) halts; 0 otherwise.

Computability

Not all functions can be computed.
» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.
> TestHalt takes two arguments, a program P and an input
x, and returns 1 iff P(x) halts; 0 otherwise.
» Then, TestHalt :NxN— {0,1} is an explicit function
which cannot be computed.

Computability

Not all functions can be computed.

» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.

> TestHalt takes two arguments, a program P and an input
x, and returns 1 iff P(x) halts; 0 otherwise.

» Then, TestHalt :NxN— {0,1} is an explicit function
which cannot be computed.

Reductions:

Computability

Not all functions can be computed.

» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.

> TestHalt takes two arguments, a program P and an input
x, and returns 1 iff P(x) halts; 0 otherwise.
» Then, TestHalt :NxN— {0,1} is an explicit function
which cannot be computed.
Reductions:
» To show that P is uncomputable, assume P exists.

Computability

Not all functions can be computed.
» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.
> TestHalt takes two arguments, a program P and an input
x, and returns 1 iff P(x) halts; 0 otherwise.
» Then, TestHalt :NxN— {0,1} is an explicit function
which cannot be computed.
Reductions:

» To show that P is uncomputable, assume P exists. But, do
not assume how P is implemented.

Computability

Not all functions can be computed.
» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.
> TestHalt takes two arguments, a program P and an input
x, and returns 1 iff P(x) halts; 0 otherwise.
» Then, TestHalt :NxN— {0,1} is an explicit function
which cannot be computed.
Reductions:
» To show that P is uncomputable, assume P exists. But, do
not assume how P is implemented.

» Example: To show that TestHalt is uncomputable, do not
assume that TestHalt must actually run P(x).

Computability

Not all functions can be computed.

» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.

> TestHalt takes two arguments, a program P and an input
x, and returns 1 iff P(x) halts; 0 otherwise.

» Then, TestHalt :NxN— {0,1} is an explicit function
which cannot be computed.

Reductions:
» To show that P is uncomputable, assume P exists. But, do
not assume how P is implemented.
» Example: To show that TestHalt is uncomputable, do not
assume that TestHalt must actually run P(x).
» Then, use the power of P to define TestHalt, which you
know is impossible.

Computability

Not all functions can be computed.

» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.

> TestHalt takes two arguments, a program P and an input
x, and returns 1 iff P(x) halts; 0 otherwise.

» Then, TestHalt :NxN— {0,1} is an explicit function
which cannot be computed.

Reductions:

» To show that P is uncomputable, assume P exists. But, do
not assume how P is implemented.

» Example: To show that TestHalt is uncomputable, do not
assume that TestHalt must actually run P(x).

» Then, use the power of P to define TestHalt, which you
know is impossible.

» Therefore, P cannot exist.

Counting

» Number of subsets of an n-element set?

Counting

» Number of subsets of an n-element set? 27.

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}?

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.
» Number of k-element subsets of an n-element set?

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.
» Number of k-element subsets of an n-element set?

(8) = (") = nt/ Tk (n— k)]

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

» Number of k-element subsets of an n-element set?
(k) = (") = n!/[K!(n— k)!].

» Number of solutions to x1 +--- + x, = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

» Number of k-element subsets of an n-element set?
(k) = (") = n!/[K!(n— k)!].

» Number of solutions to x1 +--- + x, = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

» Stars and bars: the n bins can be represented as n— 1
“dividers” or bars.

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

» Number of k-element subsets of an n-element set?
(k) = (") = n!/[K!(n— k)!].

» Number of solutions to x1 +--- + x, = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

» Stars and bars: the n bins can be represented as n— 1
“dividers” or bars. Answer: ("TK=T1).

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

» Number of k-element subsets of an n-element set?
(k) = (") = n!/[K!(n— k)!].

» Number of solutions to x1 +--- + x, = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

» Stars and bars: the n bins can be represented as n— 1
“dividers” or bars. Answer: ("TK=T1).

» If Aand B are disjoint, what is |AU B|?

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

» Number of k-element subsets of an n-element set?
(k) = (") = n!/[K!(n— k)!].

» Number of solutions to x1 +--- + x, = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

» Stars and bars: the n bins can be represented as n— 1
“dividers” or bars. Answer: ("TK=T1).

> If Aand B are disjoint, what is |JAU B|? Answer: |A|+ |B|.

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

» Number of k-element subsets of an n-element set?
(k) = (") = n!/[K!(n— k)!].

» Number of solutions to x1 +--- + x, = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

» Stars and bars: the n bins can be represented as n— 1
“dividers” or bars. Answer: ("TK=T1).

> If Aand B are disjoint, what is |JAU B|? Answer: |A|+ |B|.
» What if A and B are not disjoint?

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

» Number of k-element subsets of an n-element set?
(k) = (") = n!/[K!(n— k)!].

» Number of solutions to x1 +--- + x, = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

» Stars and bars: the n bins can be represented as n— 1
“dividers” or bars. Answer: ("TK=T1).

> If Aand B are disjoint, what is |JAU B|? Answer: |A|+ |B|.

» What if A and B are not disjoint? Inclusion-Exclusion:
|A|+|B|—|ANB|.

Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

» Number of k-element subsets of an n-element set?
(k) = (") = n!/[K!(n— k)!].

» Number of solutions to x1 +--- + x, = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

» Stars and bars: the n bins can be represented as n— 1
“dividers” or bars. Answer: ("TK=T1).

> If Aand B are disjoint, what is |JAU B|? Answer: |A|+ |B|.

» What if A and B are not disjoint? Inclusion-Exclusion:
|A|+|B|—|ANB.

> Binomial Theorem: (x +y)" =Y i_, (7)x*y" k.

Combinatorial Proofs

Prove an equation involving combinatorial terms by showing
that both sides count the same objects.

Combinatorial Proofs

Prove an equation involving combinatorial terms by showing
that both sides count the same objects.

Midterm: For kK > n,
(kq):|{(X17~"XI7)EN+:X1+"'+Xn:k}|_

n—1

Combinatorial Proofs

Prove an equation involving combinatorial terms by showing
that both sides count the same objects.

Midterm: For kK > n,
K1) =X, xn) €NF 1 xq + -+ Xp = K}

» On the RHS, since x1 + - - -+ x, = Kk, think of splitting up k
things into n chunks of size > 1 each.

Combinatorial Proofs

Prove an equation involving combinatorial terms by showing
that both sides count the same objects.

Midterm: For kK > n,
K1) =X, xn) €NF 1 xq + -+ Xp = K}

» On the RHS, since x1 + - - -+ x, = Kk, think of splitting up k
things into n chunks of size > 1 each.

» How many ways are there to create these partitions?

Combinatorial Proofs

Prove an equation involving combinatorial terms by showing
that both sides count the same objects.

Midterm: For kK > n,
D = {4, %) ENT 2 xq + -+ X = K}
» On the RHS, since x1 + - -- + xp = k, think of splitting up k
things into n chunks of size > 1 each.
» How many ways are there to create these partitions?

» This is like placing n— 1 dividers among the k objects. ..

Combinatorial Proofs

Prove an equation involving combinatorial terms by showing
that both sides count the same objects.

Midterm: For kK > n,
D = {4, %) ENT 2 xq + -+ X = K}
» On the RHS, since x1 + - -- + xp = k, think of splitting up k
things into n chunks of size > 1 each.

» How many ways are there to create these partitions?
» This is like placing n— 1 dividers among the k objects. ..

> Soit equals (£71).

Tomorrow

Review of probability.

