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To prove set equality A= B, show AC Band BC A.

To prove A C B, show that for each a € A, then a € B also.
{0,1} is the set containing the two elements 0 and 1.
[0,1] is the closed interval containing all x with 0 < x <1.

(0,1) is the open interval containing all x with 0 < x <1, or
it is the ordered tuple containing 0 and 1 (context).
Cartesian product: A x B is the set of all pairs (a, b) where
acAandbeB.

{0,1} x {A,B} ={(0,A),(0,B),(1,A),(1,B)}.

We define sets like so: {x € S: conditions on x}. This is
the set of all elements in S satisfying the stated conditions.

{(xeN:2<x<7}=1{2,3,4,5,6,7}.
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Propositional Logic
Language of propositional logic: given propositions P, Q,
> negate a proposition: —P;
» combine propositions: PV Q, PAQ,P —= Q, P < Q.

To answer questions in propositional logic, use truth tables. Or,
use logical equivalences (e.g., De Morgan).

Midterm question: given a truth table

P Q PaQ
T T F
T F T
FT T
FF F

can you write an equivalent sentence using P, Q, -, A, V?
» Answer: (PA=Q)V (=PAQ).
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First-Order Logic

First-order logic introduces quantifiers: v, 3. Now we need
more than truth tables; we need semantic proofs.

Recall the intuition:
> Vis a way to write infinite “AND”s;
» Jis a way to write infinite “OR”s.

Recall De Morgan: —Vx P(x) = 3x —~P(x) and
—3x P(x) = Vx =P(x).

Question for review: is Yx Jy P(x,y) =3y Vx P(x,y)?
» No; P(x,y) ="“x loves y”.
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Induction

Principle of induction: To prove a statement Vn € N, P(n),
> (base case) prove P(0);
» (inductive step) prove Vne N, P(n) = P(n+1).

Union bound: for events A, B, P(AU B) < P(A) +P(B).

For positive integers n and events Aq,...,An, prove
P(UL{ A)) <YL P(A)?

> Base cases: n=1 obvious; n= 2 is given above.

» Inductive step: Assume P(n). Prove P(n+1).

> Let Aq,...,An 1 be events. Then,
P(UT A) =P((UL1 A) UAnp1) < P(ULy A) +P(Anss).
Apply inductive hypothesis. P(Uj_; Aj) < X7 P(A)).
So, P(UT Aj) < X4 P(A).

vy
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Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving
VneN, P(n), prove Vn e N, Q(n), where Q(n) implies P(n).
» Try tiling a 2" x 2" grid with the upper right corner missing
using L-shaped tiles. Get stuck at the inductive step!
» Instead, tile a 2" x 2" grid with any square missing.

» Use this when your inductive hypothesis does not give you
enough information.
Strong induction: During inductive step, you can use
P(0),P(1),...,P(n) to help you prove P(n+1).
» This is needed when you reduce, not just to the previous
case P(n), but to an even smaller case.

Well ordering principle: Every non-empty subset of N has a
least element.

» Consider the least counterexample; prove there is an even
smaller counterexample!
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Graph Theory

A graph is a set of vertices V and a set of edges E.

Recall definitions: degree, connectedness. Types of graphs:
trees, forests, planar, bipartite, complete, hypercubes.

Confusing terminology: paths, walks, cycles, tours?

repeats vertices/edges? must return to start?

path no no
walk possibly no
cycle no yes

tour possibly yes



Graph Theory Results
Handshaking Lemma: ¥ ,c degv = 2|E]|.



Graph Theory Results

Handshaking Lemma: ¥ ,c degv = 2|E]|.

» Example: For Kj,, n(n—1) =2|E|, so
|E|=n(n-1)/2=(3).



Graph Theory Results

Handshaking Lemma: ¥ ,c degv = 2|E]|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.



Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.



Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:
» Connected and acyclic;



Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges.



Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges. Smallest connected graphs!



Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges. Smallest connected graphs!

» Trees are planar.



Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges. Smallest connected graphs!

» Trees are planar.
Hypercubes:

> Vertices consist of length-d bit strings; two vertices are
adjacent iff they differ in one bit.



Graph Theory Results

Handshaking Lemma: ¥,y degv = 2|E|.
» Example: For K,, n(n—1) =2|E|, so
|E|=n(n—-1)/2= (7).
Eulerian tours: Use every edge exactly once.

» An Eulerian tour exists if and only if the graph is connected
and every vertex has even degree.

Trees:

» Connected and acyclic; equivalently, connected and has
|V|—1 edges. Smallest connected graphs!

» Trees are planar.
Hypercubes:
> Vertices consist of length-d bit strings; two vertices are
adjacent iff they differ in one bit.

» Hypercubes are bipartite and have Hamiltonian cycles
(visit each vertex exactly once).
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Planarity

Planarity: can be drawn on a plane without edge crossings.
» We only discussed connected planar graphs.
» Eulers formula: v+f=e+2.
» For | V| > 3, this gives e < 3v —6.
» Important non-planar graphs: Ks 3, Ks.
» Every planar graph has a dual planar graph.
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Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

>
>
>

Use induction on the number of vertices.
Base case: A graph with one vertex only needs one color.

Inductive hypothesis: Any graph H with n vertices can be
colored with dmnax(H)+ 1 colors.

Consider a graph G with n+ 1 vertices. Remove a vertex
and its associated edges from G to form a graph G'.
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Graph Induction

A graph can be colored with d,.x + 1 colors, where dna.y is the
maximum degree of the graph.

>
>
>

Use induction on the number of vertices.

Base case: A graph with one vertex only needs one color.
Inductive hypothesis: Any graph H with n vertices can be
colored with dmnax(H)+ 1 colors.

Consider a graph G with n+ 1 vertices. Remove a vertex
and its associated edges from G to form a graph G'.

G’ has nvertices, and dmax(G') < dnax(G). Apply
inductive hypothesis to color G’ with < dj,.x(G) + 1 colors.
Add the vertex and edges back to G’ to form G.

Since the vertex has < dnax(G) neighbors, color it using
color dnax(G) +1.
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Modular Arithmetic

For a positive integer m > 2, say two numbers x,y € Z are
equivalent modulo m, x =y (mod m),if m|x—y.

If a=b (mod m)and c=d (mod m), then we can add and
multiply these equations as normal:

a+c=b+d (mod m), ac=bd (mod m).

Every x € Z is equivalent to exactly one of {0,1,...,m—1}.
So, we let Z/mZ ={0,1,...,m—1} be its own number system,
with addition and multiplication defined modulo m.
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Multiplicative Inverses

For a € Z/mZ, the following are equivalent:

» ahas a multiplicative inverse in Z/mZ, i.e., there exists
Xx € Z/mZ so that ax = 1.

> f:7Z/mZ — 7Z/mZ defined by f(x) := ax is a bijection.
» gcd(a,m)=1.
If a satisfies the three statements above, then we say
ac(Z/mz)*.

When p is prime, then (Z/pZ)* = {1,...,p—1}. Every
non-zero element has a multiplicative inverse.

Extended Euclid’s algorithm: given a,m € Z, m # 0, output
X,y € Z such that ax + my = gcd(a, m).

» For ac (Z/mZ)™, this gives ax+my =1. So, x is the
multiplicative inverse of ain Z/mZ.
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Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
a® mod m fast!

> Try 350 mod 13.

> Square the base, halve the exponent. 360 =930 — 8115,

» Reduce the base: 81 =315,

» For an odd exponent, puII out one power.

315 =3. 314 3. 97

Fermat's Little Theorem: For p prime and a € (Z/pZ)*, one has
a’'=1 (mod p).

» Or, forallacZ/pZ, a° = a (mod p).

Chinese Remainder Theorem: For pairwise coprime moduli
my,...,mp and fixed ay, ..., an, the equations x = a; (mod m;)
fori=1,...,nhas a unique solution x € Z/my - -- myZ.
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RSA public-key cryptosystem:
» Generate two distinct large primes, pand q. Let N:=pq.
» Pick a publickey e € (Z/(p—1)(q—1)Z)*. The private
key dis the inverse of ein Z/(p—1)(q—1)Z.
» Public information: (N, e). Only the receiver knows d.

» For a message m, encrypt using E(m)=m® (mod N) and
then send. Receiver decrypts using D(c) = ¢? (mod N).

RSA details:
» Correctness: Proof uses Fermat’s Little Theorem.

» Efficiency: Repeated squaring, extended Euclid, Prime
Number Theorem, primality tests.

» Security: Conjecturedto be secure.
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Polynomials

A polynomial is of the form P(x) = agx? +--- + a1 x + a, where
d € N is the degree and ag, a1, - .., aq are the coefficients.

We look at polynomials over fields. Here are fields we care
about: Q, R, C, Z/pZ for p prime.

Facts about polynomials in fields:
» A degree d polynomial has < d roots.

» There is a unique degree < d polynomial which passes
through any specified d + 1 distinct points.

» Lagrange interpolation: given distinct
(X17}’1)7~--7(Xd+17}’d+1)sthen P(X) Z:jﬁ1 yl ( ) where

Mgt a1 iy (X — X))
Mieqt, . a+ iy (i — X))

A,’(X) =

is the unique degree < d interpolating polynomial.
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Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)— Q(x) = K(x)(x?+ 1) for some polynomial K.

>

Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of
them are equivalent modulo x2+1?

| 2
| 2

>

First step: How many numbers are in Z/mZ?

For x € Z, Division Algorithm gives x = gm-+r where g € Z
andre{0,1,...,m—1}. So, x=r (mod m).

Similarly, P(x) = Q(x)(x?+ 1) + R(x) for polynomials Q
and R, where deg R < 2.

So, R(x) = rnx+ ry for some ry, 1.

Since we are in Z/pZ, there are p choices for ry and rq, so
there are p? different non-equivalent polynomials.
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Applications of Polynomials

Shamir’s secret sharing:

» If k officers get together, they know the secret s € Z/pZ. If
< k —1 officers get together, they learn nothing.

> Define P(x) :=sx_1X* " +...+s1x+s, where sy,...,8_1
are chosen randomly.
» Give each officer an evaluation of the polynomial.
Reed-Solomon codes:
» Given a message (mo,my,...,mp_1), encode it as a
polynomial P(x) = m,_1x" ' + -+ myx+ mq.
» Encode the message as a codeword of length /.

» The codeword for the message is
(0,P(0)),(1,P(1)),..., (¢~ 1,P(t—1)).
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Reed-Solomon Error Correction

» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.
» A Reed-Solomon code with codeword length ¢ = n+ 2k
can recover the message if < k packets are corrupted.
» This code has minimum pairwise Hamming distance 2k + 1
= correct k general errors.
» Berlekamp-Welch: An efficient decoding scheme for
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» A Reed-Solomon code with codeword length ¢ = n+ k can
recover the message if < k packets are erased.

» A Reed-Solomon code with codeword length ¢ = n+ 2k
can recover the message if < k packets are corrupted.
» This code has minimum pairwise Hamming distance 2k + 1
= correct k general errors.

» Berlekamp-Welch: An efficient decoding scheme for
Reed-Solomon codes under corruption errors.

> If errors are at eq,..., ey, define
E(x) :Hf-‘:1(x— €)= x"+ak_1xk‘1 +---t+aix+ap.

» Define Q(x) = P(X)E(X) = bpik_1 XK1 - 4 byx + by.

» Key Lemma: If Ry, Ry,..., Rhiok_1 are the received packets,
then R;E(i) = P(/)E(i) fori=0,1,...,n+2k —1.

> This is a system of n+ 2k linear equations in the n+ 2k
unknowns ap, as,...,ak—1,bo,b1,...,bpik_1.
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from a countably infinite alphabet.

» How to show a set is countable: put its elements into a list!
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» Examples: R, infinite-length bit strings.

» How to show a set is uncountable: Cantor diagonalization.
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What infinite-length bit string is not in the list? 101...

» Alternatively, find an injection from an uncountable set
(such as R) into the set.
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Computability

Not all functions can be computed.

» Link to countability: computer programs are countably
infinite, but functions N — {0, 1} are uncountable.

> TestHalt takes two arguments, a program P and an input
x, and returns 1 iff P(x) halts; 0 otherwise.

» Then, TestHalt :NxN— {0,1} is an explicit function
which cannot be computed.

Reductions:

» To show that P is uncomputable, assume P exists. But, do
not assume how P is implemented.

» Example: To show that TestHalt is uncomputable, do not
assume that TestHalt must actually run P(x).

» Then, use the power of P to define TestHalt, which you
know is impossible.

» Therefore, P cannot exist.
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Counting

» Number of subsets of an n-element set? 2"7. Same as the
number of length-n bit strings.

» Number of ways to rearrange {1,...,n}? n!=T]/,i.

» Number of k-element subsets of an n-element set?
(k) = (") = n!/[K!(n— k)!].

» Number of solutions to x1 +--- + x, = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

» Stars and bars: the n bins can be represented as n— 1
“dividers” or bars. Answer: ("TK=T1).

> If Aand B are disjoint, what is |JAU B|? Answer: |A|+ |B|.

» What if A and B are not disjoint? Inclusion-Exclusion:
|A|+|B|—|ANB.

> Binomial Theorem: (x +y)" =Y i_, (7)x*y" k.
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Combinatorial Proofs

Prove an equation involving combinatorial terms by showing
that both sides count the same objects.

Midterm: For kK > n,
D = {4, %) ENT 2 xq + -+ X = K}
» On the RHS, since x1 + - -- + xp = k, think of splitting up k
things into n chunks of size > 1 each.

» How many ways are there to create these partitions?
» This is like placing n— 1 dividers among the k objects. ..

> Soit equals (£71).



Tomorrow

Review of probability.



