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I logic, proofs
I induction
I graph theory
I modular arithmetic, RSA
I polynomials, error correction
I countability, computability
I counting

Set Notation

Basic notation: ∈, ⊆, ∪, ∩.
I To prove set equality A = B, show A⊆ B and B ⊆ A.
I To prove A⊆ B, show that for each a ∈ A, then a ∈ B also.
I {0,1} is the set containing the two elements 0 and 1.
I [0,1] is the closed interval containing all x with 0≤ x ≤ 1.
I (0,1) is the open interval containing all x with 0 < x < 1, or

it is the ordered tuple containing 0 and 1 (context).
I Cartesian product: A×B is the set of all pairs (a,b) where

a ∈ A and b ∈ B.
{0,1}×{A,B}= {(0,A),(0,B),(1,A),(1,B)}.

I We define sets like so: {x ∈ S : conditions on x}. This is
the set of all elements in S satisfying the stated conditions.

{x ∈ N : 2≤ x ≤ 7}= {2,3,4,5,6,7}.

Propositional Logic
Language of propositional logic: given propositions P, Q,
I negate a proposition: ¬P;
I combine propositions: P ∨Q, P ∧Q, P =⇒ Q, P ⇐⇒ Q.

To answer questions in propositional logic, use truth tables. Or,
use logical equivalences (e.g., De Morgan).

Midterm question: given a truth table

P Q P⊕Q

T T F
T F T
F T T
F F F

can you write an equivalent sentence using P, Q, ¬, ∧, ∨?
I Answer: (P ∧¬Q)∨ (¬P ∧Q).

First-Order Logic

First-order logic introduces quantifiers: ∀, ∃. Now we need
more than truth tables; we need semantic proofs.

Recall the intuition:
I ∀ is a way to write infinite “AND”s;
I ∃ is a way to write infinite “OR”s.

Recall De Morgan: ¬∀x P(x)≡ ∃x ¬P(x) and
¬∃x P(x)≡ ∀x ¬P(x).

Question for review: is ∀x ∃y P(x ,y)≡ ∃y ∀x P(x ,y)?
I No; P(x ,y) = “x loves y ”.

Induction

Principle of induction: To prove a statement ∀n ∈ N, P(n),
I (base case) prove P(0);
I (inductive step) prove ∀n ∈ N, P(n) =⇒ P(n + 1).

Union bound: for events A, B, P(A∪B)≤ P(A) +P(B).

For positive integers n and events A1, . . . ,An, prove
P(
⋃n

i=1 Ai)≤ ∑n
i=1P(Ai)?

I Base cases: n = 1 obvious; n = 2 is given above.
I Inductive step: Assume P(n). Prove P(n + 1).
I Let A1, . . . ,An+1 be events. Then,

P(
⋃n+1

i=1 Ai) = P((
⋃n

i=1 Ai)∪An+1)≤ P(
⋃n

i=1 Ai) +P(An+1).
I Apply inductive hypothesis. P(

⋃n
i=1 Ai)≤ ∑n

i=1P(Ai).
I So, P(

⋃n+1
i=1 Ai)≤ ∑n+1

i=1 P(Ai).

Other Forms of Induction
Strengthening the inductive hypothesis: Instead of proving
∀n ∈ N, P(n), prove ∀n ∈ N, Q(n), where Q(n) implies P(n).
I Try tiling a 2n×2n grid with the upper right corner missing

using L-shaped tiles. Get stuck at the inductive step!
I Instead, tile a 2n×2n grid with any square missing.
I Use this when your inductive hypothesis does not give you

enough information.
Strong induction: During inductive step, you can use
P(0),P(1), . . . ,P(n) to help you prove P(n + 1).
I This is needed when you reduce, not just to the previous

case P(n), but to an even smaller case.
Well ordering principle: Every non-empty subset of N has a
least element.
I Consider the least counterexample; prove there is an even

smaller counterexample!



Graph Theory

A graph is a set of vertices V and a set of edges E .

Recall definitions: degree, connectedness. Types of graphs:
trees, forests, planar, bipartite, complete, hypercubes.

Confusing terminology: paths, walks, cycles, tours?

repeats vertices/edges? must return to start?

path no no
walk possibly no
cycle no yes
tour possibly yes

Graph Theory Results
Handshaking Lemma: ∑v∈V degv = 2|E |.
I Example: For Kn, n(n−1) = 2|E |, so
|E |= n(n−1)/2 =

(n
2

)
.

Eulerian tours: Use every edge exactly once.
I An Eulerian tour exists if and only if the graph is connected

and every vertex has even degree.
Trees:
I Connected and acyclic; equivalently, connected and has
|V |−1 edges. Smallest connected graphs!

I Trees are planar.
Hypercubes:
I Vertices consist of length-d bit strings; two vertices are

adjacent iff they differ in one bit.
I Hypercubes are bipartite and have Hamiltonian cycles

(visit each vertex exactly once).

Planarity
Planarity: can be drawn on a plane without edge crossings.
I We only discussed connected planar graphs.
I Euler’s formula: v + f = e + 2.
I For |V | ≥ 3, this gives e ≤ 3v −6.
I Important non-planar graphs: K3,3, K5.
I Every planar graph has a dual planar graph.

Graph Induction

A graph can be colored with dmax + 1 colors, where dmax is the
maximum degree of the graph.
I Use induction on the number of vertices.
I Base case: A graph with one vertex only needs one color.
I Inductive hypothesis: Any graph H with n vertices can be

colored with dmax(H) + 1 colors.
I Consider a graph G with n + 1 vertices. Remove a vertex

and its associated edges from G to form a graph G′.
I G′ has n vertices, and dmax(G′)≤ dmax(G). Apply

inductive hypothesis to color G′ with ≤ dmax(G) + 1 colors.
I Add the vertex and edges back to G′ to form G.
I Since the vertex has ≤ dmax(G) neighbors, color it using

color dmax(G) + 1.

Modular Arithmetic

For a positive integer m ≥ 2, say two numbers x ,y ∈ Z are
equivalent modulo m, x ≡ y (mod m), if m | x−y .

If a≡ b (mod m) and c ≡ d (mod m), then we can add and
multiply these equations as normal:

a + c ≡ b + d (mod m), ac ≡ bd (mod m).

Every x ∈ Z is equivalent to exactly one of {0,1, . . . ,m−1}.
So, we let Z/mZ = {0,1, . . . ,m−1} be its own number system,
with addition and multiplication defined modulo m.

Multiplicative Inverses

For a ∈ Z/mZ, the following are equivalent:
I a has a multiplicative inverse in Z/mZ, i.e., there exists

x ∈ Z/mZ so that ax = 1.
I f : Z/mZ→ Z/mZ defined by f (x) := ax is a bijection.
I gcd(a,m) = 1.

If a satisfies the three statements above, then we say
a ∈ (Z/mZ)×.

When p is prime, then (Z/pZ)× = {1, . . . ,p−1}. Every
non-zero element has a multiplicative inverse.

Extended Euclid’s algorithm: given a,m ∈ Z, m 6= 0, output
x ,y ∈ Z such that ax + my = gcd(a,m).
I For a ∈ (Z/mZ)×, this gives ax + my = 1. So, x is the

multiplicative inverse of a in Z/mZ.



Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate
ab mod m fast!
I Try 360 mod 13.
I Square the base, halve the exponent. 360 = 930 = 8115.
I Reduce the base: 8115 = 315.
I For an odd exponent, pull out one power.

315 = 3 ·314 = 3 ·97 = · · ·
Fermat’s Little Theorem: For p prime and a ∈ (Z/pZ)×, one has
ap−1 ≡ 1 (mod p).
I Or, for all a ∈ Z/pZ, ap ≡ a (mod p).

Chinese Remainder Theorem: For pairwise coprime moduli
m1, . . . ,mn and fixed a1, . . . ,an, the equations x ≡ ai (mod mi)
for i = 1, . . . ,n has a unique solution x ∈ Z/m1 · · ·mnZ.

RSA

RSA public-key cryptosystem:
I Generate two distinct large primes, p and q. Let N := pq.
I Pick a public key e ∈ (Z/(p−1)(q−1)Z)×. The private

key d is the inverse of e in Z/(p−1)(q−1)Z.
I Public information: (N,e). Only the receiver knows d .
I For a message m, encrypt using E(m) = me (mod N) and

then send. Receiver decrypts using D(c) = cd (mod N).

RSA details:
I Correctness: Proof uses Fermat’s Little Theorem.
I Efficiency: Repeated squaring, extended Euclid, Prime

Number Theorem, primality tests.
I Security: Conjectured to be secure.

Polynomials
A polynomial is of the form P(x) = adxd + · · ·+ a1x + a0, where
d ∈ N is the degree and a0,a1, . . . ,ad are the coefficients.

We look at polynomials over fields. Here are fields we care
about: Q, R, C, Z/pZ for p prime.

Facts about polynomials in fields:
I A degree d polynomial has ≤ d roots.
I There is a unique degree ≤ d polynomial which passes

through any specified d + 1 distinct points.
I Lagrange interpolation: given distinct

(x1,y1), . . . ,(xd+1,yd+1), then P(x) := ∑d+1
i=1 yi∆i(x), where

∆i(x) :=
∏j∈{1,...,d+1}\{i}(x−xj)

∏j∈{1,...,d+1}\{i}(xi −xj)
,

is the unique degree ≤ d interpolating polynomial.

Midterm Question

Polynomials P and Q (over Z/pZ) are equivalent modulo x2 + 1
if P(x)−Q(x) = K (x)(x2 + 1) for some polynomial K .
I Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of
them are equivalent modulo x2 + 1?
I First step: How many numbers are in Z/mZ?
I For x ∈ Z, Division Algorithm gives x = qm + r where q ∈ Z

and r ∈ {0,1, . . . ,m−1}. So, x ≡ r (mod m).
I Similarly, P(x) = Q(x)(x2 + 1) + R(x) for polynomials Q

and R, where degR < 2.
I So, R(x) = r1x + r0 for some r0, r1.
I Since we are in Z/pZ, there are p choices for r0 and r1, so

there are p2 different non-equivalent polynomials.

Applications of Polynomials

Shamir’s secret sharing:
I If k officers get together, they know the secret s ∈ Z/pZ. If
≤ k −1 officers get together, they learn nothing.

I Define P(x) := sk−1xk−1 + · · ·+ s1x + s, where s1, . . . ,sk−1
are chosen randomly.

I Give each officer an evaluation of the polynomial.
Reed-Solomon codes:
I Given a message (m0,m1, . . . ,mn−1), encode it as a

polynomial P(x) = mn−1xn−1 + · · ·+ m1x + m0.
I Encode the message as a codeword of length `.
I The codeword for the message is

(0,P(0)),(1,P(1)), . . . ,(`−1,P(`−1)).

Reed-Solomon Error Correction

I A Reed-Solomon code with codeword length ` = n + k can
recover the message if ≤ k packets are erased.

I A Reed-Solomon code with codeword length ` = n + 2k
can recover the message if ≤ k packets are corrupted.
I This code has minimum pairwise Hamming distance 2k + 1

=⇒ correct k general errors.
I Berlekamp-Welch: An efficient decoding scheme for

Reed-Solomon codes under corruption errors.
I If errors are at e1, . . . ,ek , define

E(x) = ∏k
i=1(x−ei ) = xk + ak−1xk−1 + · · ·+ a1x + a0.

I Define Q(x) = P(x)E(x) = bn+k−1xn+k−1 + · · ·+ b1x + b0.
I Key Lemma: If R0,R1, . . . ,Rn+2k−1 are the received packets,

then RiE(i) = P(i)E(i) for i = 0,1, . . . ,n + 2k −1.
I This is a system of n + 2k linear equations in the n + 2k

unknowns a0,a1, . . . ,ak−1,b0,b1, . . . ,bn+k−1.



Countability
A set S is countable if there is an injection S→ N.
I Countable sets: N, Z, N×N, Q. All finite-length strings

from a countably infinite alphabet.
I How to show a set is countable: put its elements into a list!

A set S is uncountable if it is not countable.
I Examples: R, infinite-length bit strings.
I How to show a set is uncountable: Cantor diagonalization.

0 0 0 · · ·
0 1 1 · · ·
1 1 0 · · ·
...

...
...

. . .

What infinite-length bit string is not in the list? 101 . . .
I Alternatively, find an injection from an uncountable set

(such as R) into the set.

Computability
Not all functions can be computed.
I Link to countability: computer programs are countably

infinite, but functions N→{0,1} are uncountable.
I TestHalt takes two arguments, a program P and an input

x , and returns 1 iff P(x) halts; 0 otherwise.
I Then, TestHalt : N×N→{0,1} is an explicit function

which cannot be computed.
Reductions:
I To show that P is uncomputable, assume P exists. But, do

not assume how P is implemented.
I Example: To show that TestHalt is uncomputable, do not

assume that TestHalt must actually run P(x).
I Then, use the power of P to define TestHalt, which you

know is impossible.
I Therefore, P cannot exist.

Counting

I Number of subsets of an n-element set? 2n. Same as the
number of length-n bit strings.

I Number of ways to rearrange {1, . . . ,n}? n! = ∏n
i=1 i .

I Number of k -element subsets of an n-element set?(n
k

)
=
( n

n−k

)
= n!/[k !(n−k)!].

I Number of solutions to x1 + · · ·+ xn = k in the natural
numbers? Throw k unlabeled balls into n labeled bins.

I Stars and bars: the n bins can be represented as n−1
“dividers” or bars. Answer:

(n+k−1
k

)
.

I If A and B are disjoint, what is |A∪B|? Answer: |A|+ |B|.
I What if A and B are not disjoint? Inclusion-Exclusion:
|A|+ |B|− |A∩B|.

I Binomial Theorem: (x + y)n = ∑n
k=0

(n
k

)
xkyn−k .

Combinatorial Proofs

Prove an equation involving combinatorial terms by showing
that both sides count the same objects.

Midterm: For k ≥ n,(k−1
n−1

)
= |{(x1, . . . ,xn) ∈ N+ : x1 + · · ·+ xn = k}|.

I On the RHS, since x1 + · · ·+ xn = k , think of splitting up k
things into n chunks of size ≥ 1 each.

I How many ways are there to create these partitions?
I This is like placing n−1 dividers among the k objects. . .
I So it equals

(k−1
n−1

)
.

Tomorrow

Review of probability.


