Discrete Mathematics Review

- logic, proofs
induction
graph theory
modular arithmetic, RSA
- polynomials, error correction
- countability, computability
- counting

First-Order Logic

First-order logic introduces quantifiers: \forall, \exists. Now we need more than truth tables; we need semantic proofs.

Recall the intuition:

- \forall is a way to write infinite "AND"s;
- \exists is a way to write infinite "OR"s.

Recall De Morgan: $\neg \forall x P(x) \equiv \exists x \neg P(x)$ and $\neg \exists x P(x) \equiv \forall x \neg P(x)$.

Question for review: is $\forall x \exists y P(x, y) \equiv \exists y \forall x P(x, y)$?

- No; $P(x, y)=$ " x loves y ".

Set Notation

Basic notation: $\in, \subseteq, \cup, \cap$

- To prove set equality $A=B$, show $A \subseteq B$ and $B \subseteq A$.
- To prove $A \subseteq B$, show that for each $a \in A$, then $a \in B$ also
- $\{0,1\}$ is the set containing the two elements 0 and 1 .
- $[0,1]$ is the closed interval containing all x with $0 \leq x \leq 1$.
- $(0,1)$ is the open interval containing all x with $0<x<1$, or it is the ordered tuple containing 0 and 1 (context)
- Cartesian product: $A \times B$ is the set of all pairs (a, b) where $a \in A$ and $b \in B$.
$\{0,1\} \times\{A, B\}=\{(0, A),(0, B),(1, A),(1, B)\}$.
- We define sets like so: $\{x \in S$: conditions on $x\}$. This is the set of all elements in S satisfying the stated conditions

$$
\{x \in \mathbb{N}: 2 \leq x \leq 7\}=\{2,3,4,5,6,7\} .
$$

Induction

Principle of induction: To prove a statement $\forall n \in \mathbb{N}, P(n)$,

- (base case) prove $P(0)$;
- (inductive step) prove $\forall n \in \mathbb{N}, P(n) \Longrightarrow P(n+1)$.

Union bound: for events $A, B, \mathbb{P}(A \cup B) \leq \mathbb{P}(A)+\mathbb{P}(B)$.
For positive integers n and events A_{1}, \ldots, A_{n}, prove $\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$?

- Base cases: $n=1$ obvious; $n=2$ is given above.
- Inductive step: Assume $P(n)$. Prove $P(n+1)$.

Let A_{1}, \ldots, A_{n+1} be events. Then,
$\mathbb{P}\left(\bigcup_{i=1}^{n+1} A_{i}\right)=\mathbb{P}\left(\left(\bigcup_{i=1}^{n} A_{i}\right) \cup A_{n+1}\right) \leq \mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right)+\mathbb{P}\left(A_{n+1}\right)$.

- Apply inductive hypothesis. $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)$.
- So, $\mathbb{P}\left(\cup_{i=1}^{n+1} A_{i}\right) \leq \sum_{i=1}^{n+1} \mathbb{P}\left(A_{i}\right)$.

Propositional Logic

Language of propositional logic: given propositions P, Q,

- negate a proposition: $\neg P$;
- combine propositions: $P \vee Q, P \wedge Q, P \Longrightarrow Q, P \Longleftrightarrow Q$.

To answer questions in propositional logic, use truth tables. Or, use logical equivalences (e.g., De Morgan)

Midterm question: given a truth table

P	Q	$P \oplus Q$
T	T	F
T	F	T
F	T	T
F	F	F

can you write an equivalent sentence using P, Q, \neg, \wedge, \vee ?

- Answer: $(P \wedge \neg Q) \vee(\neg P \wedge Q)$.

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving $\forall n \in \mathbb{N}, P(n)$, prove $\forall n \in \mathbb{N}, Q(n)$, where $Q(n)$ implies $P(n)$.

- Try tiling a $2^{n} \times 2^{n}$ grid with the upper right corner missing using L-shaped tiles. Get stuck at the inductive step!
- Instead, tile a $2^{n} \times 2^{n}$ grid with any square missing.
- Use this when your inductive hypothesis does not give you enough information.
Strong induction: During inductive step, you can use $P(0), P(1), \ldots, P(n)$ to help you prove $P(n+1)$.
- This is needed when you reduce, not just to the previous case $P(n)$, but to an even smaller case.
Well ordering principle: Every non-empty subset of \mathbb{N} has a least element.
- Consider the least counterexample; prove there is an even smaller counterexample!

Graph Theory

A graph is a set of vertices V and a set of edges E.
Recall definitions: degree, connectedness. Types of graphs: trees, forests, planar, bipartite, complete, hypercubes

Confusing terminology: paths, walks, cycles, tours?

	repeats vertices/edges?	must return to start?
path	no	no
walk	possibly	no
cycle	no	yes
tour	possibly	yes

Graph Induction

A graph can be colored with $d_{\text {max }}+1$ colors, where $d_{\text {max }}$ is the maximum degree of the graph

- Use induction on the number of vertices.
- Base case: A graph with one vertex only needs one color.
- Inductive hypothesis: Any graph H with n vertices can be colored with $d_{\max }(H)+1$ colors.
- Consider a graph G with $n+1$ vertices. Remove a vertex and its associated edges from G to form a graph G^{\prime}.
- G^{\prime} has n vertices, and $d_{\max }\left(G^{\prime}\right) \leq d_{\max }(G)$. Apply
inductive hypothesis to color G^{\prime} with $\leq d_{\max }(G)+1$ colors.
- Add the vertex and edges back to G^{\prime} to form G.
- Since the vertex has $\leq d_{\max }(G)$ neighbors, color it using color $d_{\max }(G)+1$.

Graph Theory Results

Handshaking Lemma: $\sum_{v \in V} \operatorname{deg} v=2|E|$.

- Example: For $K_{n}, n(n-1)=2|E|$, so $|E|=n(n-1) / 2=\binom{n}{2}$.
Eulerian tours: Use every edge exactly once
- An Eulerian tour exists if and only if the graph is connected and every vertex has even degree.

Trees:

- Connected and acyclic; equivalently, connected and has $|V|-1$ edges. Smallest connected graphs!
- Trees are planar

Hypercubes:

- Vertices consist of length- d bit strings; two vertices are adjacent iff they differ in one bit.
- Hypercubes are bipartite and have Hamiltonian cycles (visit each vertex exactly once).

Modular Arithmetic

For a positive integer $m \geq 2$, say two numbers $x, y \in \mathbb{Z}$ are equivalent modulo $m, x \equiv y(\bmod m)$, if $m \mid x-y$.

If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then we can add and multiply these equations as normal:

$$
a+c \equiv b+d \quad(\bmod m), \quad a c \equiv b d \quad(\bmod m)
$$

Every $x \in \mathbb{Z}$ is equivalent to exactly one of $\{0,1, \ldots, m-1\}$. So, we let $\mathbb{Z} / m \mathbb{Z}=\{0,1, \ldots, m-1\}$ be its own number system, with addition and multiplication defined modulo m.

Planarity

Planarity: can be drawn on a plane without edge crossings

- We only discussed connected planar graphs.
- Euler's formula: $v+f=e+2$.
- For $|V| \geq 3$, this gives $e \leq 3 v-6$.
- Important non-planar graphs: $K_{3,3}, K_{5}$.
- Every planar graph has a dual planar graph.

Multiplicative Inverses

For $a \in \mathbb{Z} / m \mathbb{Z}$, the following are equivalent:

- a has a multiplicative inverse in $\mathbb{Z} / m \mathbb{Z}$, i.e., there exists $x \in \mathbb{Z} / m \mathbb{Z}$ so that $a x=1$.
- $f: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ defined by $f(x):=a x$ is a bijection.
- $\operatorname{gcd}(a, m)=1$.

If a satisfies the three statements above, then we say $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$.

When p is prime, then $(\mathbb{Z} / p \mathbb{Z})^{\times}=\{1, \ldots, p-1\}$. Every non-zero element has a multiplicative inverse.

Extended Euclid's algorithm: given $a, m \in \mathbb{Z}, m \neq 0$, output $x, y \in \mathbb{Z}$ such that $a x+m y=\operatorname{gcd}(a, m)$.

- For $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$, this gives $a x+m y=1$. So, x is the multiplicative inverse of a in $\mathbb{Z} / m \mathbb{Z}$.

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate $a^{b} \bmod m$ fast!

- Try $3^{60} \bmod 13$.

Square the base, halve the exponent. $3^{60}=9^{30}=81^{15}$.

- Reduce the base: $81^{15}=3^{15}$.
- For an odd exponent, pull out one power $3^{15}=3 \cdot 3^{14}=3 \cdot 9^{7}=\cdots$
Fermat's Little Theorem: For p prime and $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, one has $a^{p-1} \equiv 1(\bmod p)$.
- Or, for all $a \in \mathbb{Z} / p \mathbb{Z}, a^{p} \equiv a(\bmod p)$

Chinese Remainder Theorem: For pairwise coprime moduli m_{1}, \ldots, m_{n} and fixed a_{1}, \ldots, a_{n}, the equations $x \equiv a_{i}\left(\bmod m_{i}\right)$ for $i=1, \ldots, n$ has a unique solution $x \in \mathbb{Z} / m_{1} \cdots m_{n} \mathbb{Z}$.

Midterm Question

Polynomials P and Q (over $\mathbb{Z} / p \mathbb{Z}$) are equivalent modulo $x^{2}+1$ if $P(x)-Q(x)=K(x)\left(x^{2}+1\right)$ for some polynomial K.

- Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of them are equivalent modulo $x^{2}+1$?

- First step: How many numbers are in $\mathbb{Z} / m \mathbb{Z}$?
- For $x \in \mathbb{Z}$, Division Algorithm gives $x=q m+r$ where $q \in \mathbb{Z}$ and $r \in\{0,1, \ldots, m-1\}$. So, $x \equiv r(\bmod m)$.
- Similarly, $P(x)=Q(x)\left(x^{2}+1\right)+R(x)$ for polynomials Q and R, where $\operatorname{deg} R<2$.
- So, $R(x)=r_{1} x+r_{0}$ for some r_{0}, r_{1}.
- Since we are in $\mathbb{Z} / p \mathbb{Z}$, there are p choices for r_{0} and r_{1}, so there are p^{2} different non-equivalent polynomials.

RSA

RSA public-key cryptosystem

- Generate two distinct large primes, p and q. Let $N:=p q$

Pick a public key $e \in(\mathbb{Z} /(p-1)(q-1) \mathbb{Z})^{\times}$. The private key d is the inverse of e in $\mathbb{Z} /(p-1)(q-1) \mathbb{Z}$.

- Public information: (N, e). Only the receiver knows d.
- For a message m, encrypt using $E(m)=m^{e}(\bmod N)$ and then send. Receiver decrypts using $D(c)=c^{d}(\bmod N)$.

RSA details:

- Correctness: Proof uses Fermat's Little Theorem.
- Efficiency: Repeated squaring, extended Euclid, Prime Number Theorem, primality tests.
- Security: Conjectured to be secure

Applications of Polynomials

Shamir's secret sharing

- If k officers get together, they know the secret $s \in \mathbb{Z} / p \mathbb{Z}$. If $\leq k-1$ officers get together, they learn nothing
- Define $P(x):=s_{k-1} x^{k-1}+\cdots+s_{1} x+s$, where s_{1}, \ldots, s_{k-1} are chosen randomly.
- Give each officer an evaluation of the polynomial.

Reed-Solomon codes:

- Given a message ($m_{0}, m_{1}, \ldots, m_{n-1}$), encode it as a polynomial $P(x)=m_{n-1} x^{n-1}+\cdots+m_{1} x+m_{0}$.
- Encode the message as a codeword of length ℓ.
- The codeword for the message is $(0, P(0)),(1, P(1)), \ldots,(\ell-1, P(\ell-1))$.

Polynomials

A polynomial is of the form $P(x)=a_{d} x^{d}+\cdots+a_{1} x+a_{0}$, where $d \in \mathbb{N}$ is the degree and $a_{0}, a_{1}, \ldots, a_{d}$ are the coefficients.

We look at polynomials over fields. Here are fields we care about: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / p \mathbb{Z}$ for p prime

Facts about polynomials in fields:

- A degree d polynomial has $\leq d$ roots.
- There is a unique degree $\leq d$ polynomial which passes through any specified $d+1$ distinct points.
- Lagrange interpolation: given distinct
$\left(x_{1}, y_{1}\right), \ldots,\left(x_{d+1}, y_{d+1}\right)$, then $P(x):=\sum_{i=1}^{d+1} y_{i} \Delta_{i}(x)$, where

$$
\Delta_{i}(x):=\frac{\prod_{j \in\{1, \ldots, d+1\} \backslash\{i\}}\left(x-x_{j}\right)}{\prod_{j \in\{1, \ldots, d+1\} \backslash\{i\}}\left(x_{i}-x_{j}\right)},
$$

is the unique degree $\leq d$ interpolating polynomial.

Reed-Solomon Error Correction

- A Reed-Solomon code with codeword length $\ell=n+k$ can recover the message if $\leq k$ packets are erased.
- A Reed-Solomon code with codeword length $\ell=n+2 k$ can recover the message if $\leq k$ packets are corrupted
- This code has minimum pairwise Hamming distance $2 k+1$ \Longrightarrow correct k general errors.
- Berlekamp-Welch: An efficient decoding scheme for Reed-Solomon codes under corruption errors.
- If errors are at e_{1}, \ldots, e_{k}, define
$E(x)=\prod_{i=1}^{k}\left(x-e_{i}\right)=x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$
- Define $Q(x)=P(x) E(x)=b_{n+k-1} x^{n+k-1}+\cdots+b_{1} x+b_{0}$
- Key Lemma: If $R_{0}, R_{1}, \ldots, R_{n+2 k-1}$ are the received packets, then $R_{i} E(i)=P(i) E(i)$ for $i=0,1, \ldots, n+2 k-1$.
- This is a system of $n+2 k$ linear equations in the $n+2 k$ unknowns $a_{0}, a_{1}, \ldots, a_{k-1}, b_{0}, b_{1}, \ldots, b_{n+k-1}$.

Countability

A set S is countable if there is an injection $S \rightarrow \mathbb{N}$.

- Countable sets: $\mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}, \mathbb{Q}$. All finite-length strings from a countably infinite alphabet
- How to show a set is countable: put its elements into a list! A set S is uncountable if it is not countable.
- Examples: \mathbb{R}, infinite-length bit strings.
- How to show a set is uncountable: Cantor diagonalization.

0	0	0	\cdots
0	1	1	\cdots
1	1	0	\cdots
\vdots	\vdots	\vdots	\ddots

What infinite-length bit string is not in the list? 101 ..

- Alternatively, find an injection from an uncountable set (such as \mathbb{R}) into the set.

Combinatorial Proofs

Prove an equation involving combinatorial terms by showing that both sides count the same objects.

Midterm: For $k \geq n$,
$\binom{k-1}{n-1}=\left|\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{N}^{+}: x_{1}+\cdots+x_{n}=k\right\}\right|$.

- On the RHS, since $x_{1}+\cdots+x_{n}=k$, think of splitting up k things into n chunks of size ≥ 1 each.
- How many ways are there to create these partitions?
- This is like placing $n-1$ dividers among the k objects. .
-So it equals $\binom{k-1}{n-1}$.

Computability

Not all functions can be computed

- Link to countability: computer programs are countably infinite, but functions $\mathbb{N} \rightarrow\{0,1\}$ are uncountable.
- Testhalt takes two arguments, a program P and an input x, and returns 1 iff $P(x)$ halts; 0 otherwise
- Then, TestHalt : $\mathbb{N} \times \mathbb{N} \rightarrow\{0,1\}$ is an explicit function which cannot be computed
Reductions
- To show that P is uncomputable, assume P exists. But, do not assume how P is implemented.
- Example: To show that TestHalt is uncomputable, do not assume that Test Halt must actually run $P(x)$.
- Then, use the power of P to define TestHalt, which you know is impossible.
- Therefore, P cannot exist.

Tomorrow

Review of probability.

Counting

- Number of subsets of an n-element set? 2^{n}. Same as the number of length- n bit strings.
- Number of ways to rearrange $\{1, \ldots, n\} ? n!=\prod_{i=1}^{n} i$.
- Number of k-element subsets of an n-element set? $\binom{n}{k}=\binom{n}{n-k}=n!/[k!(n-k)!]$.
- Number of solutions to $x_{1}+\cdots+x_{n}=k$ in the natural numbers? Throw k unlabeled balls into n labeled bins.
- Stars and bars: the n bins can be represented as $n-1$ dividers" or bars. Answer: $\left({ }_{k}^{n+k-}\right)$
- If A and B are disjoint, what is $|A \cup B|$? Answer: $|A|+|B|$.
- What if A and B are not disjoint? Inclusion-Exclusion: $|A|+|B|-|A \cap B|$.
- Binomial Theorem: $(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$.

