Discrete Mathematics Review

- logic, proofs
- induction
- graph theory
- modular arithmetic, RSA
- polynomials, error correction
- countability, computability
- counting

First-Order Logic

First-order logic introduces quantifiers: \forall , \exists . Now we need more than truth tables; we need semantic proofs.

Recall the intuition:

- ► ∀ is a way to write infinite "AND"s;
- \blacktriangleright \exists is a way to write infinite "OR"s.

Recall De Morgan: $\neg \forall x P(x) \equiv \exists x \neg P(x)$ and $\neg \exists x P(x) \equiv \forall x \neg P(x)$.

Question for review: is $\forall x \exists y P(x, y) \equiv \exists y \forall x P(x, y)$? No; P(x, y) = "x loves y".

Set Notation

Basic notation: \in , \subseteq , \cup , \cap .

- ▶ To prove set equality A = B, show $A \subseteq B$ and $B \subseteq A$.
- ▶ To prove $A \subseteq B$, show that for each $a \in A$, then $a \in B$ also.
- \blacktriangleright {0,1} is the set containing the two elements 0 and 1.
- [0,1] is the closed interval containing all x with $0 \le x \le 1$.
- (0,1) is the open interval containing all x with 0 < x < 1, or it is the ordered tuple containing 0 and 1 (context).
- Cartesian product: $A \times B$ is the set of all pairs (a, b) where $a \in A$ and $b \in B$.
- $\{0,1\} \times \{A,B\} = \{(0,A), (0,B), (1,A), (1,B)\}.$
- We define sets like so: {x ∈ S : conditions on x}. This is the set of all elements in S satisfying the stated conditions.

 ${x \in \mathbb{N} : 2 \le x \le 7} = {2,3,4,5,6,7}.$

Induction

Principle of induction: To prove a statement $\forall n \in \mathbb{N}, P(n),$

- ► (base case) prove P(0);
- ▶ (inductive step) prove $\forall n \in \mathbb{N}, P(n) \implies P(n+1)$.

Union bound: for events *A*, *B*, $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$.

For positive integers *n* and events A_1, \ldots, A_n , prove $\mathbb{P}(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mathbb{P}(A_i)$?

- ▶ Base cases: n = 1 obvious; n = 2 is given above.
- ▶ Inductive step: Assume P(n). Prove P(n+1).
- ► Let A_1, \ldots, A_{n+1} be events. Then, $\mathbb{P}(\bigcup_{i=1}^{n+1} A_i) = \mathbb{P}((\bigcup_{i=1}^n A_i) \cup A_{n+1}) \le \mathbb{P}(\bigcup_{i=1}^n A_i) + \mathbb{P}(A_{n+1}).$
- ▶ Apply inductive hypothesis. $\mathbb{P}(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} \mathbb{P}(A_i)$.
- ► So, $\mathbb{P}(\bigcup_{i=1}^{n+1} A_i) \leq \sum_{i=1}^{n+1} \mathbb{P}(A_i)$.

Propositional Logic

Language of propositional logic: given propositions P, Q,

- negate a proposition: $\neg P$;
- ▶ combine propositions: $P \lor Q$, $P \land Q$, $P \implies Q$, $P \iff Q$.

To answer questions in propositional logic, use *truth tables*. Or, use logical equivalences (e.g., De Morgan).

Midterm question: given a truth table

Ρ	Q	$P \oplus Q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

can you write an equivalent sentence using P, Q, \neg, \land, \lor ?

Answer: $(P \land \neg Q) \lor (\neg P \land Q)$.

Other Forms of Induction

Strengthening the inductive hypothesis: Instead of proving $\forall n \in \mathbb{N}, P(n)$, prove $\forall n \in \mathbb{N}, Q(n)$, where Q(n) implies P(n).

- Try tiling a 2ⁿ × 2ⁿ grid with the upper right corner missing using L-shaped tiles. Get stuck at the inductive step!
- ▶ Instead, tile a $2^n \times 2^n$ grid with *any* square missing.
- Use this when your inductive hypothesis does not give you enough information.

Strong induction: During inductive step, you can use $P(0), P(1), \ldots, P(n)$ to help you prove P(n+1).

This is needed when you reduce, not just to the previous case P(n), but to an even smaller case.

Well ordering principle: Every non-empty subset of $\ensuremath{\mathbb{N}}$ has a least element.

Consider the *least counterexample*; prove there is an even smaller counterexample!

Graph Theory

A graph is a set of vertices V and a set of edges E.

Recall definitions: degree, connectedness. Types of graphs: trees, forests, planar, bipartite, complete, hypercubes.

Confusing terminology: paths, walks, cycles, tours?

	repeats vertices/edges?	must return to start?
path	no	no
walk	possibly	no
cycle	no	yes
tour	possibly	ves

Graph Induction

A graph can be colored with $d_{max} + 1$ colors, where d_{max} is the maximum degree of the graph.

- Use induction on the number of vertices.
- Base case: A graph with one vertex only needs one color.
- ► Inductive hypothesis: Any graph *H* with *n* vertices can be colored with $d_{max}(H) + 1$ colors.
- Consider a graph G with n+1 vertices. Remove a vertex and its associated edges from G to form a graph G'.
- G' has n vertices, and d_{max}(G') ≤ d_{max}(G). Apply inductive hypothesis to color G' with ≤ d_{max}(G) + 1 colors.
- Add the vertex and edges back to G' to form G.
- Since the vertex has ≤ d_{max}(G) neighbors, color it using color d_{max}(G) + 1.

Graph Theory Results

Handshaking Lemma: $\sum_{v \in V} \deg v = 2|E|$.

• Example: For K_n , n(n-1) = 2|E|, so $|E| = n(n-1)/2 = \binom{n}{2}$.

Eulerian tours: Use every edge exactly once.

An Eulerian tour exists if and only if the graph is connected and every vertex has even degree.

Trees:

- Connected and acyclic; equivalently, connected and has |V| 1 edges. Smallest connected graphs!
- Trees are planar.

Hypercubes:

- Vertices consist of length-d bit strings; two vertices are adjacent iff they differ in one bit.
- Hypercubes are bipartite and have Hamiltonian cycles (visit each vertex exactly once).

Modular Arithmetic

For a positive integer $m \ge 2$, say two numbers $x, y \in \mathbb{Z}$ are equivalent modulo $m, x \equiv y \pmod{m}$, if $m \mid x - y$.

If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then we can add and multiply these equations as normal:

 $a+c\equiv b+d\pmod{m}, \qquad ac\equiv bd\pmod{m}.$

Every $x \in \mathbb{Z}$ is equivalent to exactly one of $\{0, 1, ..., m-1\}$. So, we let $\mathbb{Z}/m\mathbb{Z} = \{0, 1, ..., m-1\}$ be its own number system, with addition and multiplication defined modulo *m*.

Planarity

Planarity: can be drawn on a plane without edge crossings.

- We only discussed connected planar graphs.
- Euler's formula: v + f = e + 2.
- For $|V| \ge 3$, this gives $e \le 3v 6$.
- ▶ Important non-planar graphs: $K_{3,3}$, K_5 .
- Every planar graph has a dual planar graph.

Multiplicative Inverses

For $a \in \mathbb{Z}/m\mathbb{Z}$, the following are equivalent:

- ▶ *a* has a multiplicative inverse in $\mathbb{Z}/m\mathbb{Z}$, i.e., there exists $x \in \mathbb{Z}/m\mathbb{Z}$ so that ax = 1.
- $f: \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ defined by f(x) := ax is a bijection.
- ▶ gcd(a, m) = 1.

If a satisfies the three statements above, then we say $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$.

When *p* is prime, then $(\mathbb{Z}/p\mathbb{Z})^{\times} = \{1, \dots, p-1\}$. Every non-zero element has a multiplicative inverse.

Extended Euclid's algorithm: given $a, m \in \mathbb{Z}, m \neq 0$, output $x, y \in \mathbb{Z}$ such that $ax + my = \gcd(a, m)$.

For $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$, this gives ax + my = 1. So, x is the multiplicative inverse of a in $\mathbb{Z}/m\mathbb{Z}$.

Modular Arithmetic Results

Repeated squaring (or fast modular exponentiation): Calculate $a^b \mod m$ fast!

- ▶ Try 3⁶⁰ mod 13.
- Square the base, halve the exponent. $3^{60} = 9^{30} = 81^{15}$.
- Reduce the base: $81^{15} = 3^{15}$.
- ► For an odd exponent, pull out one power. $3^{15} = 3 \cdot 3^{14} = 3 \cdot 9^7 = \cdots$

Fermat's Little Theorem: For p prime and $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, one has $a^{p-1} \equiv 1 \pmod{p}$.

▶ Or, for all $a \in \mathbb{Z}/p\mathbb{Z}$, $a^p \equiv a \pmod{p}$.

Chinese Remainder Theorem: For pairwise coprime moduli m_1, \ldots, m_n and fixed a_1, \ldots, a_n , the equations $x \equiv a_i \pmod{m_i}$ for $i = 1, \ldots, n$ has a unique solution $x \in \mathbb{Z}/m_1 \cdots m_n \mathbb{Z}$.

Midterm Question

Polynomials *P* and *Q* (over $\mathbb{Z}/p\mathbb{Z}$) are equivalent modulo $x^2 + 1$ if $P(x) - Q(x) = K(x)(x^2 + 1)$ for some polynomial *K*.

Similar to the definition of modular equivalence!

How many polynomials can you put into a set so that no two of them are equivalent modulo $x^2 + 1$?

- First step: How many numbers are in $\mathbb{Z}/m\mathbb{Z}$?
- ▶ For $x \in \mathbb{Z}$, Division Algorithm gives x = qm + r where $q \in \mathbb{Z}$ and $r \in \{0, 1, ..., m-1\}$. So, $x \equiv r \pmod{m}$.
- Similarly, $P(x) = Q(x)(x^2 + 1) + R(x)$ for polynomials Q and R, where deg R < 2.
- So, $R(x) = r_1 x + r_0$ for some r_0, r_1 .
- Since we are in ℤ/pℤ, there are p choices for r₀ and r₁, so there are p² different non-equivalent polynomials.

RSA

RSA public-key cryptosystem:

- ▶ Generate two distinct large primes, *p* and *q*. Let *N* := *pq*.
- ▶ Pick a public key $e \in (\mathbb{Z}/(p-1)(q-1)\mathbb{Z})^{\times}$. The private key *d* is the inverse of *e* in $\mathbb{Z}/(p-1)(q-1)\mathbb{Z}$.
- Public information: (N, e). Only the receiver knows d.
- ▶ For a message *m*, encrypt using $E(m) = m^e \pmod{N}$ and then send. Receiver decrypts using $D(c) = c^d \pmod{N}$.

RSA details:

- Correctness: Proof uses Fermat's Little Theorem.
- Efficiency: Repeated squaring, extended Euclid, Prime Number Theorem, primality tests.
- Security: Conjectured to be secure.

Applications of Polynomials

Shamir's secret sharing:

- ▶ If *k* officers get together, they know the secret $s \in \mathbb{Z}/p\mathbb{Z}$. If $\leq k-1$ officers get together, they learn nothing.
- ► Define $P(x) := s_{k-1}x^{k-1} + \dots + s_1x + s$, where s_1, \dots, s_{k-1} are chosen randomly.
- Give each officer an evaluation of the polynomial.

Reed-Solomon codes:

- Given a message $(m_0, m_1, \dots, m_{n-1})$, encode it as a polynomial $P(x) = m_{n-1}x^{n-1} + \dots + m_1x + m_0$.
- Encode the message as a codeword of length ℓ .
- The codeword for the message is (0, P(0)), (1, P(1)), ..., (ℓ − 1, P(ℓ − 1)).

Polynomials

A polynomial is of the form $P(x) = a_d x^d + \dots + a_1 x + a_0$, where $d \in \mathbb{N}$ is the degree and a_0, a_1, \dots, a_d are the coefficients.

We look at polynomials over *fields*. Here are fields we care about: \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}/p\mathbb{Z}$ for *p* prime.

Facts about polynomials in fields:

- A degree *d* polynomial has $\leq d$ roots.
- ► There is a unique degree ≤ d polynomial which passes through any specified d + 1 distinct points.
- Lagrange interpolation: given distinct $(x_1, y_1), \dots, (x_{d+1}, y_{d+1})$, then $P(x) := \sum_{i=1}^{d+1} y_i \Delta_i(x)$, where

 $\Delta_i(x) := \frac{\prod_{j \in \{1, \dots, d+1\} \setminus \{i\}} (x - x_j)}{\prod_{j \in \{1, \dots, d+1\} \setminus \{i\}} (x_i - x_j)},$

is the unique degree $\leq d$ interpolating polynomial.

Reed-Solomon Error Correction

- A Reed-Solomon code with codeword length $\ell = n + k$ can recover the message if $\leq k$ packets are *erased*.
- A Reed-Solomon code with codeword length $\ell = n + 2k$ can recover the message if $\leq k$ packets are *corrupted*.
 - This code has minimum pairwise Hamming distance 2k + 1 \implies correct *k* general errors.
- Berlekamp-Welch: An efficient decoding scheme for Reed-Solomon codes under corruption errors.
 - If errors are at $e_1, ..., e_k$, define $E(x) = \prod_{i=1}^k (x - e_i) = x^k + a_{k-1}x^{k-1} + \dots + a_1x + a_0.$
 - Define $Q(x) = P(x)E(x) = b_{n+k-1}x^{n+k-1} + \dots + b_1x + b_0$.
 - Key Lemma: If $R_0, R_1, \dots, R_{n+2k-1}$ are the received packets, then $R_i E(i) = P(i)E(i)$ for $i = 0, 1, \dots, n+2k-1$.
 - This is a system of n+2k linear equations in the n+2k unknowns $a_0, a_1, \ldots, a_{k-1}, b_0, b_1, \ldots, b_{n+k-1}$.

Countability

A set *S* is countable if there is an injection $S \rightarrow \mathbb{N}$.

- Countable sets: N, ℤ, N×N, ℚ. All finite-length strings from a countably infinite alphabet.
- ► How to show a set is countable: put its elements into a list!
- A set *S* is uncountable if it is not countable.
- Examples: \mathbb{R} , infinite-length bit strings.
- ► How to show a set is uncountable: Cantor diagonalization.

What infinite-length bit string is not in the list? 101...

 \blacktriangleright Alternatively, find an *injection* from an uncountable set (such as $\mathbb{R})$ into the set.

Combinatorial Proofs

Prove an equation involving combinatorial terms by showing that both sides count the same objects.

Midterm: For $k \ge n$,

- $\binom{k-1}{n-1} = |\{(x_1,\ldots,x_n) \in \mathbb{N}^+ : x_1 + \cdots + x_n = k\}|.$
- ▶ On the RHS, since $x_1 + \cdots + x_n = k$, think of splitting up *k* things into *n* chunks of size ≥ 1 each.
- How many ways are there to create these partitions?
- This is like placing n-1 dividers among the k objects...
- ▶ So it equals $\binom{k-1}{n-1}$.

Computability

Not all functions can be computed.

- ▶ Link to countability: computer programs are countably infinite, but functions $\mathbb{N} \to \{0, 1\}$ are uncountable.
- TestHalt takes two arguments, a program P and an input x, and returns 1 iff P(x) halts; 0 otherwise.
- \blacktriangleright Then, <code>TestHalt:</code> $\mathbb{N}\times\mathbb{N}\to\{0,1\}$ is an *explicit* function which cannot be computed.

Reductions:

- To show that P is uncomputable, assume P exists. But, do not assume how P is implemented.
- Example: To show that TestHalt is uncomputable, do not assume that TestHalt must actually run P(x).
- Then, use the power of P to define TestHalt, which you know is impossible.
- ► Therefore, *P* cannot exist.

Tomorrow

Review of probability.

Counting

- Number of subsets of an *n*-element set? 2ⁿ. Same as the number of length-*n* bit strings.
- ▶ Number of ways to rearrange $\{1, ..., n\}$? $n! = \prod_{i=1}^{n} i$.
- ▶ Number of *k*-element subsets of an *n*-element set? $\binom{n}{k} = \binom{n}{n-k} = n!/[k!(n-k)!].$
- ▶ Number of solutions to $x_1 + \dots + x_n = k$ in the natural numbers? Throw *k* unlabeled balls into *n* labeled bins.
- Stars and bars: the *n* bins can be represented as n-1 "dividers" or bars. Answer: $\binom{n+k-1}{k}$.
- ▶ If *A* and *B* are disjoint, what is $|A \cup B|$? Answer: |A| + |B|.
- ▶ What if *A* and *B* are not disjoint? Inclusion-Exclusion: $|A| + |B| |A \cap B|$.
- ▶ Binomial Theorem: $(x+y)^n = \sum_{k=0}^n {n \choose k} x^k y^{n-k}$.