
Counting ∞

Are there more blue dots or red dots?

Did you count all of the dots?

How did you know the answer?

Today: We count to ∞ and beyond.
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Review: Bijections

A function f : A→ B is:

I one-to-one (an injection) if f (x) = f (y) implies x = y . Or,
x 6= y implies f (x) 6= f (y). Distinct inputs, distinct outputs.

I onto (a surjection) if for each y ∈ B, there is an x ∈ A with
f (x) = y . Every element in B is hit.

Then, f is a bijection if it is both an injection and a surjection.

A bijection “rearranges” the elements of A to form B.
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Counting Infinite Sets

How did we know that there were the same number of dots of
each color, without counting?

You found a bijection between the blue dots and red dots!

To count infinities, we will take the definition of “same size” to
be “there exists a bijection between the sets”.
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Countability

What does it mean for us to “count” the elements of a set?

Our model for counting: N= {0,1,2, . . .}.

A set A is called countable if there exists a bijection between A
and a subset of N.

I Any finite set is countable. Consider the set
Odin’s notable children = {Hela,Thor,Loki}.

f (Hela) = 0, f (Thor) = 1, f (Loki) = 2.

Then, f : Odin’s notable children→{0,1,2} is a bijection.
I N itself is countable.
I If A is countable and infinite, then we say it is countably

infinite.
I What else is countable?
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Hilbert’s Hotel I

Consider an infinite hotel, one room for each n ∈ N. The rooms
are all filled by guests.

A new guest arrives. Can we accommodate the new guest?

For each n ∈ N, move the guest in room n to n+1. Then place
the new guest in room 0.

In other words, we found a bijection f : N∪{−1}→ N.

f (−1) = 0, f (n) = n+1 for n ∈ N.

Adding one more element to N does not change its size.
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Hilbert’s Hotel II

Now suppose that a new bus of passengers arrives. There is a
new guest n for each positive integer n.

Can we still accommodate the guests?

For each n ∈ N, move guest in room n to room 2n. Put the i th
new guest into the i th odd-numbered room.

We found a bijection f : Z→ N.

f (n) = 2n for n ∈ N, f (−n) = 2n−1 for positive n.

Adding a countably infinite number of elements to N does not
change its size.
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Proving the Bijection Formally
Recall: If A and B are finite and have the same size, then if
f : A→ B is injective or surjective, then it is both.

This is not true for infinite sets, so we must check both
injectivity and surjectivity.

f (n) = 2n for n ∈ N, f (−n) = 2n−1 for positive n.

Proof that f is bijective.
I One-to-one: Assume f (x) = f (y). Prove x = y .
I If f (x) = f (y) are odd, then −2x−1 =−2y −1. So, x = y .
I If f (x) = f (y) are even, then 2x = 2y . So, x = y .
I Onto: Consider any n ∈ N. Either n is even or odd.
I If n is even, then n = 2k for some k ∈ N. Then, f (k) = n.
I If n is odd, then n = 2k −1 for some positive k . Then

f (−k) = n.
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f (−k) = n.
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Countably Infinite Sets

Here are some countably infinite sets.

I N. N∪{−1}. Z.
I The set of even numbers. The set of odd numbers.
I The set of prime numbers.

Why is the set of prime numbers countably infinite? It is infinite
(we proved this). But we can list them.

2,3,5,7,11, . . .

The list is exhaustive. Every prime number shows up in the list.

An exhaustive list is equivalent to a bijection.

f (2) = 0, f (3) = 1, f (5) = 2, f (7) = 3, f (11) = 4, . . .

A set whose elements can be listed is countable.
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Be Careful

Is the following a listing of Z?

0,1,2,3, . . . ,−1,−2,−3, . . .

Where does the element −1 show up in the list?

To give a listing of a set A, every element of A must show up at
some finite index in the list.

I In the example above, we never “reach” the element −1.

Here is a valid listing of Z:

0,1,−1,2,−2,3,−3, . . .

Be careful with “. . . ” in the middle of your listing.
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Hilbert’s Hotel III
Now a countably infinite number of buses arrive, each bus
containing a countably infinite number of passengers.

Can we accomodate the guests?

First, “make room for ∞” (send guest n to room 2n as before).

Label each bus with a prime number p. Label each person in
the bus with a positive integer.

Send the i th person in bus p to the pi -th odd numbered room.
I Bus 2’s passengers get sent to: 2 ·21−1, 2 ·22−1,

2 ·23−1, . . .
I Bus 3’s passengers get sent to: 2 ·31−1, 2 ·32−1,

2 ·33−1, . . .
Adding a countably infinite number of countable infinities to N
does not change its size.
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The Formal Injection
We found an injection

f : {prime numbers}×{1,2,3, . . .}→ {odd numbers}

given by f (p, i) = pi -th odd number.

Since {prime numbers}, {1,2,3, . . .}, and {odd numbers} all
have the same size as N, this is the same as finding an injection

g : N×N→ N.

Why? There are bijections

f1 : N→{prime numbers},
f2 : N→{1,2,3, . . .},
f3 : N→{odd numbers},

so we get an injection g(m,n) = f−1
3 (f (f1(m), f2(n))).
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f2 : N→{1,2,3, . . .},
f3 : N→{odd numbers},

so we get an injection g(m,n) = f−1
3 (f (f1(m), f2(n))).



Bijections Compose

Fact: If f : A→ B and g : B→ C are bijections, then so is g ◦ f .

Proof.
I If g(f (x)) = g(f (y)), then g is one-to-one so f (x) = f (y).
I Since f is one-to-one, then x = y . So g ◦ f is one-to-one.
I If c ∈ C, then there is a b ∈ B such that g(b) = c (since g is

onto).
I There is an a ∈ A such that f (a) = b (since f is onto).
I So, g(f (a)) = g(b) = c. So g ◦ f is onto.

Bijections compose.

Exercise: If there are bijections f : A→ A′ and g : B→ B′, then
h(a,b) = (f (a),g(b)) is a bijection A×B→ A′×B′.
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Bijections Compose

Fact: If f : A→ B is a bijection, and there are bijections
f1 : A→ A′ and f2 : B→ B′, then there is a bijection g : A′→ B′.

Proof.

A B

A′ B′

f

f1 f2
g

Define g = f2 ◦ f ◦ f−1
1 . The composition of bijections is a

bijection.

To show that A has the same size as N, we can show that A
has the same size as A′, where A′ has the same size as N.
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Is Q Countable?

Is Q countable?

I We found an injection N×N→ N. So, N×N is countable.
I Since Z has the same size as N, then Z×Z is countable.
I Every rational number q ∈Q can be written as q = a/b,

where a,b ∈ Z, b > 0, and a/b is in lowest terms.
I This defines an injection Q→ Z×Z.
I An injection implies that Q is “smaller” than N×N, so Q is

countable.
I On the other hand, Q is infinite, so Q is countably infinite.

Principle: To show that a set A is countable, we only need to
find an injection from A into a countable set.
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Interleaving Argument
Suppose that A is a countable alphabet. Consider the set of all
finite strings whose symbols come from A.

A is countable.

Proof.
I List the alphabet A = {a1,a2,a3, . . .}.
I Step 0: List the empty string.
I Step 1: List all strings of length ≤ 1 using symbols from
{a1}. a1.

I Step 2: List all strings of length ≤ 2 using symbols from
{a1,a2}. a1, a2, a1a1, a1a2, a2a1, a2a2.

I Step 3: List all strings of length ≤ 3 using symbols from
{a1,a2,a3}.

I Continue forever. This exhaustively lists the members of
the set.
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Polynomials with Rational Coefficients

Consider the set of polynomials with rational coefficients.

Is this
set countable?

For a polynomial, e.g., P(x) = (2/3)x4−2x2 +(1/10)x +9,
think of it as a string: (2/3,0,−2,1/10,9).

The alphabet is Q, countably infinite.

Each polynomial is a finite-length string from the alphabet.

The polynomials with rational coefficients are countable.
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Is R Countable?
Is R countable?

First, let us study the closed unit interval [0,1].

Each element of [0,1] can be represented as a infinite-length
decimal string.

I For example, take the element 0.37. This can also be
represented as 0.36999 . . ..

Suppose we had a list of all numbers in [0,1].

0 . 9 9 1 . . .
0 . 0 2 3 . . .
0 . 2 8 9 . . .
...

...
...

...
...

. . .

If we change the numbers on the diagonal, 0.929. . . , we get a
number which is not in the list.

I Change all 8s to 1s and change all other numbers to 8s.
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Cantor’s Diagonalization Argument

I Assume we could list all numbers in [0,1].

I Form a new number in [0,1] by changing each number in
the diagonal.

I This number cannot be the i th element of the list because
it differs in the i th digit.

I We found an element not in our original list!
I So, [0,1] is uncountable.

What happens when we try to apply the diagonalization
argument to N?

I We get a number with infinitely many digits.
I This is not a natural number! Not a contradiction.
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The Size of R v.s. [0,1]
Are [0,1] and R the same size?

Bijection?

Cantor-Schröder-Bernstein Theorem: If there are injections
f : A→ B and g : B→ A, then there is a bijection A→ B.

It suffices to find an injection both ways.
I [0,1]→ R: Map x 7→ x .
I R→ [0,1]: Try x 7→ (1+exp(−x))−1.
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What Is Not Countable?

Recall: Given a set S, the power set P(S) of S is the set of all
subsets of S.

If |S|= n, then |P(S)|= 2n.

Is the size (cardinality) of the power set of S larger than the size
of S when S is infinite?

Example of a function f : {0,1,2}→P({0,1,2}):

f (0) = {1,2}, f (1) = {1}, f (2) =∅.
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The Power Set Is Large

Theorem: There is no bijection S→P(S).

Proof.
I Consider any f : S→P(S). We will show that f is not a

bijection.
I We will define a set A⊆ S so that nothing maps to A, i.e.,

f (x) 6= A for all x .
I Consider the set A⊆ S, defined by A = {x ∈ S : x /∈ f (x)}.
I Case 1: If x ∈ f (x), then x /∈ A. So, f (x) 6= A.
I Case 2: If x /∈ f (x), then x ∈ A. So f (x) 6= A.
I Conclusion: No x gets mapped to A. So f cannot be

surjective.
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Comparison with Interleaving Argument

N and P(N) are not the same size.

Interleaving argument: The set of finite-length strings with
symbols from N is countable.

P(N) can be thought of as the set of infinite-length strings with
symbols from {0,1}.

I For S ⊆ N, if i ∈ S, then the i th bit of the string is 1.
I Example: {2,3,4} ≡ (0,0,1,1,1,0,0,0, . . .)

In fact, since the numbers in [0,1] can be written as
infinite-length bit strings (binary expansion), there is a bijection

f : [0,1]→P(N).
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The Power Set Is Large, Again

Suppose S is countable, S = {s0,s1,s2,s3, . . .}.

Consider the table:

x is s0 in f (x)? is s1 in f (x)? is s2 in f (x)? · · ·

s0 N N N · · ·
s1 Y Y N · · ·
s2 N Y N · · ·
...

...
...

...
. . .

Is every element of P(S) listed? Consider the set formed by
“flipping the diagonal”: {s0,s2, . . .}= {x ∈ S : x /∈ f (x)}.

This set is not listed.

The previous proof is also a proof by diagonalization!
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Cardinal Numbers

The power set of a set S has strictly larger cardinality than S.

This means that P(R) has even larger cardinality than R! And
then there is P(P(R)). . .

The size of sets is measured by cardinal numbers.
I Each natural number is a cardinal number.
I The size of N is a cardinal number (countably infinite).
I R has the “cardinality of the continuum”.
I There are even larger cardinal numbers!

Are there cardinalities between N and R? (Continuum
Hypothesis) Not provable/disprovable from our axioms!
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Summary

I A set is countable if there is an injection into N.
I Countable sets: N, Z, Q, prime numbers, finite-length

strings from a countable alphabet.
I Cantor introduced a diagonalization argument. We proved

that [0,1] is uncountable.
I Cantor-Schröder-Bernstein Theorem: If there is an

injection both ways, there is a bijection.
I The power set is strictly larger than the original set!


