Counting ∞

:::

Are there more blue dots or red dots?
Did you count all of the dots?
How did you know the answer?
Today: We count to ∞ and beyond.

Countability

What does it mean for us to "count" the elements of a set?
Our model for counting: $\mathbb{N}=\{0,1,2, \ldots\}$
A set A is called countable if there exists a bijection between A and a subset of \mathbb{N}.

- Any finite set is countable. Consider the set Odin's notable children $=\{$ Hela, Thor, Loki $\}$

$$
f(\text { Hela })=0, \quad f(\text { Thor })=1, \quad f(\text { Loki })=2 .
$$

Then, f : Odin's notable children $\rightarrow\{0,1,2\}$ is a bijection.
N itself is countable

- If A is countable and infinite, then we say it is countably infinite
-What else is countable?

Review: Bijections

A function $f: A \rightarrow B$ is:

- one-to-one (an injection) if $f(x)=f(y)$ implies $x=y$. Or $x \neq y$ implies $f(x) \neq f(y)$. Distinct inputs, distinct outputs.
- onto (a surjection) if for each $y \in B$, there is an $x \in A$ with $f(x)=y$. Every element in B is hit
Then, f is a bijection if it is both an injection and a surjection.
A bijection "rearranges" the elements of A to form B.

Hilbert's Hotel I

Consider an infinite hotel, one room for each $n \in \mathbb{N}$. The rooms are all filled by guests.

A new guest arrives. Can we accommodate the new guest?
For each $n \in \mathbb{N}$, move the guest in room n to $n+1$. Then place the new guest in room 0 .

In other words, we found a bijection $f: \mathbb{N} \cup\{-1\} \rightarrow \mathbb{N}$.

$$
f(-1)=0, \quad f(n)=n+1 \text { for } n \in \mathbb{N} .
$$

Adding one more element to \mathbb{N} does not change its size.

Counting Infinite Sets

:::
:::
How did we know that there were the same number of dots of each color, without counting?

You found a bijection between the blue dots and red dots!
To count infinities, we will take the definition of "same size" to be "there exists a bijection between the sets".

Hilbert's Hotel II

Now suppose that a new bus of passengers arrives. There is a new guest n for each positive integer n.

Can we still accommodate the guests?
For each $n \in \mathbb{N}$, move guest in room n to room $2 n$. Put the i th new guest into the ith odd-numbered room

We found a bijection $f: \mathbb{Z} \rightarrow \mathbb{N}$

$$
f(n)=2 n \text { for } n \in \mathbb{N}, \quad f(-n)=2 n-1 \text { for positive } n
$$

Adding a countably infinite number of elements to \mathbb{N} does not change its size

Proving the Bijection Formally

Recall: If A and B are finite and have the same size, then if $f: A \rightarrow B$ is injective or surjective, then it is both.

This is not true for infinite sets, so we must check both injectivity and surjectivity.

$$
f(n)=2 n \text { for } n \in \mathbb{N}, \quad f(-n)=2 n-1 \text { for positive } n .
$$

Proof that f is bijective.

- One-to-one: Assume $f(x)=f(y)$. Prove $x=y$
- If $f(x)=f(y)$ are odd, then $-2 x-1=-2 y-1$. So, $x=y$.
- If $f(x)=f(y)$ are even, then $2 x=2 y$. So, $x=y$.
- Onto: Consider any $n \in \mathbb{N}$. Either n is even or odd.
- If n is even, then $n=2 k$ for some $k \in \mathbb{N}$. Then, $f(k)=n$.
- If n is odd, then $n=2 k-1$ for some positive k. Then $f(-k)=n . \quad \square$

Hilbert's Hotel III

Now a countably infinite number of buses arrive, each bus containing a countably infinite number of passengers.

Can we accomodate the guests?
First, "make room for $\omega^{\prime \prime}$ (send guest n to room $2 n$ as before).
Label each bus with a prime number p. Label each person in the bus with a positive integer.
Send the i th person in bus p to the p^{i}-th odd numbered room.

- Bus 2^{\prime} s passengers get sent to: $2 \cdot 2^{1}-1,2 \cdot 2^{2}-1$, $2 \cdot 2^{3}-1, \ldots$
- Bus 3^{\prime} s passengers get sent to: $2 \cdot 3^{1}-1,2 \cdot 3^{2}-1$, $2 \cdot 3^{3}-1$,
Adding a countably infinite number of countable infinities to \mathbb{N} does not change its size.

Countably Infinite Sets

Here are some countably infinite sets.

- $\mathbb{N} . \mathbb{N} \cup\{-1\} . \mathbb{Z}$.
- The set of even numbers. The set of odd numbers.
- The set of prime numbers.

Why is the set of prime numbers countably infinite? It is infinite (we proved this). But we can list them.

$$
2,3,5,7,11, \ldots
$$

The list is exhaustive. Every prime number shows up in the list. An exhaustive list is equivalent to a bijection.

$$
f(2)=0, f(3)=1, f(5)=2, f(7)=3, f(11)=4, \ldots
$$

A set whose elements can be listed is countable.

The Formal Injection

We found an injection

$$
f:\{\text { prime numbers }\} \times\{1,2,3, \ldots\} \rightarrow\{\text { odd numbers }\}
$$

given by $f(p, i)=p^{i}$-th odd number.
Since $\{$ prime numbers $\},\{1,2,3, \ldots\}$, and $\{0$ dd numbers $\}$ all have the same size as \mathbb{N}, this is the same as finding an injection

$$
g: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}
$$

Why? There are bijections

$$
\begin{aligned}
& f_{1}: \mathbb{N} \rightarrow\{\text { prime numbers }\}, \\
& f_{2}: \mathbb{N} \rightarrow\{1,2,3, \ldots\}, \\
& f_{3}: \mathbb{N} \rightarrow\{\text { odd numbers }\},
\end{aligned}
$$

so we get an injection $g(m, n)=f_{3}^{-1}\left(f\left(f_{1}(m), f_{2}(n)\right)\right)$.

Be Careful

Is the following a listing of \mathbb{Z} ?

$$
0,1,2,3, \ldots,-1,-2,-3, \ldots
$$

Where does the element -1 show up in the list?
To give a listing of a set A, every element of A must show up at some finite index in the list.

- In the example above, we never "reach" the element -1 .

Here is a valid listing of \mathbb{Z} :

$$
0,1,-1,2,-2,3,-3, \ldots
$$

Be careful with ". .." in the middle of your listing.

Bijections Compose

Fact: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then so is $g \circ f$. Proof.

- If $g(f(x))=g(f(y))$, then g is one-to-one so $f(x)=f(y)$.
- Since f is one-to-one, then $x=y$. So $g \circ f$ is one-to-one.
- If $c \in C$, then there is a $b \in B$ such that $g(b)=c$ (since g is onto).
- There is an $a \in A$ such that $f(a)=b$ (since f is onto)
- So, $g(f(a))=g(b)=c$. So $g \circ f$ is onto. \square

Bijections compose.
Exercise: If there are bijections $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$, then $h(a, b)=(f(a), g(b))$ is a bijection $A \times B \rightarrow A^{\prime} \times B^{\prime}$.

Bijections Compose

Fact: If $f: A \rightarrow B$ is a bijection, and there are bijections
$f_{1}: A \rightarrow A^{\prime}$ and $f_{2}: B \rightarrow B^{\prime}$, then there is a bijection $g: A^{\prime} \rightarrow B^{\prime}$.
Proof.

$$
\begin{array}{ccc}
A \xrightarrow{A} & B \\
\left.\right|_{t_{1}} & & { }^{f_{2}} \\
A^{\prime} \xrightarrow{g} & B^{\prime}
\end{array}
$$

Define $g=f_{2} \circ f \circ f_{1}^{-1}$. The composition of bijections is a bijection. \square

To show that A has the same size as \mathbb{N}, we can show that A has the same size as A^{\prime}, where A^{\prime} has the same size as \mathbb{N}.

Polynomials with Rational Coefficients

Consider the set of polynomials with rational coefficients. Is this set countable?

For a polynomial, e.g., $P(x)=(2 / 3) x^{4}-2 x^{2}+(1 / 10) x+9$, think of it as a string: $(2 / 3,0,-2,1 / 10,9)$.

The alphabet is \mathbb{Q}, countably infinite.
Each polynomial is a finite-length string from the alphabet.
The polynomials with rational coefficients are countable

Is \mathbb{Q} Countable?

Is \mathbb{Q} countable?

- We found an injection $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. So, $\mathbb{N} \times \mathbb{N}$ is countable.
- Since \mathbb{Z} has the same size as \mathbb{N}, then $\mathbb{Z} \times \mathbb{Z}$ is countable.
- Every rational number $q \in \mathbb{Q}$ can be written as $q=a / b$, where $a, b \in \mathbb{Z}, b>0$, and a / b is in lowest terms.
- This defines an injection $\mathbb{Q} \rightarrow \mathbb{Z} \times \mathbb{Z}$.
- An injection implies that \mathbb{Q} is "smaller" than $\mathbb{N} \times \mathbb{N}$, so \mathbb{Q} is countable.
- On the other hand, \mathbb{Q} is infinite, so \mathbb{Q} is countably infinite.

Principle: To show that a set A is countable, we only need to find an injection from A into a countable set.

Is \mathbb{R} Countable?

Is \mathbb{R} countable? First, let us study the closed unit interval $[0,1]$
Each element of $[0,1]$ can be represented as a infinite-length decimal string.

- For example, take the element 0.37. This can also be represented as 0.36999..
Suppose we had a list of all numbers in $[0,1]$.

$$
\begin{array}{cccccc}
0 & . & 9 & 9 & 1 & \ldots \\
0 & . & 0 & 2 & 3 & \ldots \\
0 & . & 2 & 8 & 9 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

If we change the numbers on the diagonal, $0.929 \ldots$, we get a number which is not in the list.

- Change all 8 s to 1 s and change all other numbers to 8 s .

Interleaving Argument

Suppose that A is a countable alphabet. Consider the set of all finite strings whose symbols come from A.
A is countable.
Proof

- List the alphabet $A=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$
- Step 0: List the empty string
- Step 1: List all strings of length ≤ 1 using symbols from $\left\{a_{1}\right\} . a_{1}$.
- Step 2: List all strings of length ≤ 2 using symbols from $\left\{a_{1}, a_{2}\right\} . a_{1}, a_{2}, a_{1} a_{1}, a_{1} a_{2}, a_{2} a_{1}, a_{2} a_{2}$
- Step 3: List all strings of length ≤ 3 using symbols from $\left\{a_{1}, a_{2}, a_{3}\right\}$.
- Continue forever. This exhaustively lists the members of the set. \square

Cantor's Diagonalization Argument

- Assume we could list all numbers in $[0,1]$.
- Form a new number in $[0,1]$ by changing each number in the diagonal.
- This number cannot be the ith element of the list because it differs in the ith digit.
- We found an element not in our original list!
- So, $[0,1]$ is uncountable.

What happens when we try to apply the diagonalization argument to \mathbb{N} ?

- We get a number with infinitely many digits.
- This is not a natural number! Not a contradiction.

The Size of \mathbb{R} v.s. $[0,1]$
Are $[0,1]$ and \mathbb{R} the same size? Bijection?
Cantor-Schröder-Bernstein Theorem: If there are injections $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijection $A \rightarrow B$.

It suffices to find an injection both ways.

- $[0,1] \rightarrow \mathbb{R}$: Map $x \mapsto x$.
- $\mathbb{R} \rightarrow[0,1]: \operatorname{Try} x \mapsto(1+\exp (-x))^{-1}$.

Comparison with Interleaving Argument

\mathbb{N} and $\mathscr{P}(\mathbb{N})$ are not the same size.
Interleaving argument: The set of finite-length strings with symbols from \mathbb{N} is countable.
$\mathscr{P}(\mathbb{N})$ can be thought of as the set of infinite-length strings with symbols from $\{0,1\}$.

- For $S \subseteq \mathbb{N}$, if $i \in S$, then the i th bit of the string is 1 .
- Example: $\{2,3,4\} \equiv(0,0,1,1,1,0,0,0, \ldots)$

In fact, since the numbers in $[0,1]$ can be written as infinite-length bit strings (binary expansion), there is a bijection

$$
f:[0,1] \rightarrow \mathscr{P}(\mathbb{N})
$$

What Is Not Countable?

Recall: Given a set S, the power set $\mathscr{P}(S)$ of S is the set of all subsets of S.

If $|S|=n$, then $|\mathscr{P}(S)|=2^{n}$.
Is the size (cardinality) of the power set of S larger than the size of S when S is infinite?

Example of a function $f:\{0,1,2\} \rightarrow \mathscr{P}(\{0,1,2\})$:

$$
f(0)=\{1,2\}, \quad f(1)=\{1\}, \quad f(2)=\varnothing .
$$

The Power Set Is Large, Again

Suppose S is countable, $S=\left\{s_{0}, s_{1}, s_{2}, s_{3}, \ldots\right\}$.
Consider the table:

x	is s_{0} in $f(x) ?$	is s_{1} in $f(x) ?$	is s_{2} in $f(x) ?$	\cdots
	N	N	N	\cdots
s_{0}	N	Y	N	\cdots
s_{1}	Y	Y	N	\cdots
s_{2}	N	\vdots	\vdots	\ddots

Is every element of $\mathscr{P}(S)$ listed? Consider the set formed by "flipping the diagonal": $\left\{s_{0}, s_{2}, \ldots\right\}=\{x \in S: x \notin f(x)\}$. This set is not listed

The previous proof is also a proof by diagonalization!

The Power Set Is Large
Theorem: There is no bijection $S \rightarrow \mathscr{P}(S)$.
Proof.

- Consider any $f: S \rightarrow \mathscr{P}(S)$. We will show that f is not a bijection.
- We will define a set $A \subseteq S$ so that nothing maps to A, i.e. $f(x) \neq A$ for all x.
- Consider the set $A \subseteq S$, defined by $A=\{x \in S: x \notin f(x)\}$.
- Case 1: If $x \in f(x)$, then $x \notin A$. So, $f(x) \neq A$.
- Case 2: If $x \notin f(x)$, then $x \in A$. So $f(x) \neq A$.
- Conclusion: No x gets mapped to A. So f cannot be surjective. \square

Cardinal Numbers

The power set of a set S has strictly larger cardinality than S.
This means that $\mathscr{P}(\mathbb{R})$ has even larger cardinality than \mathbb{R} ! And then there is $\mathscr{P}(\mathscr{P}(\mathbb{R}))$..

The size of sets is measured by cardinal numbers.

- Each natural number is a cardinal number.
- The size of \mathbb{N} is a cardinal number (countably infinite).
- \mathbb{R} has the "cardinality of the continuum"
- There are even larger cardinal numbers!

Are there cardinalities between \mathbb{N} and \mathbb{R} ? (Continuum Hypothesis) Not provable/disprovable from our axioms!

Summary

- A set is countable if there is an injection into \mathbb{N}.
- Countable sets: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$, prime numbers, finite-length strings from a countable alphabet
- Cantor introduced a diagonalization argument. We proved that $[0,1]$ is uncountable.
- Cantor-Schröder-Bernstein Theorem: If there is an injection both ways, there is a bijection.
- The power set is strictly larger than the original set

