
Communicating with Errors

Someone sends you a message:

“’As mmbrof teGreek commniand art of n oft oranzins
thsis hihly offesive.”

As you can see, parts of the message have been lost.

How can we transmit messages so that the receiver can
recover the original message if there are errors?

Today: Use polynomials to share secrets and correct errors.
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Review of Polynomials

I “d +1 distinct points uniquely determine a degree ≤ d
polynomial.”

I From the d +1 points we can find an interpolating
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Why do we use finite fields such as Z/pZ (p prime)?
I Computations are fast.
I Computations are precise; no need for floating point
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Nuclear Bombs

Think about the password for America’s nuclear bombs.

I “No one man should have all that power.” – Kanye West

For safety, we want to require k government officials to agree
before the nuclear bomb password is revealed.

I That is, if k government officials come together, they can
access the password.

I But if k −1 or fewer officials come together, they cannot
access the password.

In fact, we will design something stronger.
I If k −1 officials come together, they know nothing about

the password.
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Shamir’s Secret Sharing Scheme

Work in GF(p).

1. Encode the secret s as a0.
2. Pick a1, . . . ,ak−1 randomly in {0,1, . . . ,p−1}. This defines

a polynomial P(x) := ak−1xk−1 + · · ·+a−1x +a0.
3. For the i th government official, give him/her the share

(i ,P(i)).

Correctness: If any k officials come together, they can
interpolate to find the polynomial P. Then evaluate P(0).

I k people know the secret.
No Information: If k −1 officials come together, there are p
possible polynomials that go through the k −1 shares.

I But this is the same as number of possible secrets.
I The k −1 officials discover nothing new.
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Implementation of Secret Sharing

How large must the prime p be?

I Larger than the number of people involved.
I Larger than the secret.

If the secret s has n bits, then the secret is O(2n). So we need
p > 2n.

The arithmetic is done with logp = O(n) bit numbers.

The runtime is a polynomial in the number of bits of the secret
and the number of people, i.e., the scheme is efficient.
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Sending Packets

You want to send a long message.

I In Internet communication, the message is divided up into
smaller chunks called packets.

I So say you want to send n packets, m0,m1, . . . ,mn−1.
I In information theory, we say that you send the packets

across a channel.
I What happens if the channel is imperfect?
I First model: when you use the channel, it can drop any k

of your packets.

Can we still communicate our message?
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Reed-Solomon Codes

Encode the packets m0,m1, . . . ,mn−1 as values of a polynomial
P(0),P(1), . . . ,P(n−1).

What is degP? At most n−1. Remember: n points determine a
degree ≤ n−1 polynomial.

Then, send (0,P(0)),(1,P(1)), . . . ,(n+k −1,P(n+k −1))
across the channel.

I Note: If the channel drops packets, the receiver knows
which packets are dropped.

Property of polynomials: If we receive any n packets, then we
can interpolate to recover the message.

If the channel drops at most k packets, we are safe.
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Alternative Encoding

The message has packets m0,m1, . . . ,mn−1.

Instead of encoding the messages as values of the polynomial,
we can encode it as coefficients of the polynomial.

P(x) = mn−1xn−1 + · · ·+m1x +m0.

Then, send (0,P(0)),(1,P(1)), . . . ,(n+k −1,P(n+k −1)) as
before.
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Corruptions

Now you receive the following message:

“As d memkIrOcf tee GVwek tommcnity and X pZrt cf
lneTof KVesZ oAcwWizytzoOs this ir higLly offensOvz.”

Instead of letters being erased, letters are now corrupted.
These are called general errors.

Can we still recover the original message?

In fact, Reed-Solomon codes still do the job!
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A Broader Look at Coding

Suppose we want to send a length-n message,
m0,m1, . . . ,mn−1.

Each packet is in Z/pZ.
The message (m0,m1, . . . ,mn−1) is in (Z/pZ)n.

We want to encode the message into (Z/pZ)n+k . The encoded
message is longer, because redundancy recovers errors.

Let Encode : (Z/pZ)n→ (Z/pZ)n+k be the encoding function.
Let C := range(Encode) be the set of codewords.

A codeword is a possible encoded message.

We want the codewords to be far apart. Separated codewords
means we can tolerate errors.
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Hamming Distance

Given two strings s1 and s2, the Hamming distance d(s1,s2)
between two strings is the number of places where they differ.

Properties:
I d(s1,s2)≥ 0, with equality if and only if s1 = s2.
I Symmetry: d(s1,s2) = d(s2,s1).
I Triangle Inequality: d(s1,s3)≤ d(s1,s2)+d(s2,s3).

Proof of Triangle Inequality :
I Start with s1.
I Change d(s1,s2) symbols to get s2.
I Change d(s2,s3) symbols to get s3.
I So s1 and s3 differ by at most d(s1,s2)+d(s2,s3) symbols.
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Hamming Distance & Error Correction

Theorem: A code can recover k general errors if the minimum
Hamming distance between any two distinct codewords is at
least 2k +1.

Proof.
I Suppose we send the codeword coriginal.
I It gets corrupted to a string s with d(coriginal,s)≤ k .
I Consider a different codeword cother.
I Then, d(coriginal,cother)≤ d(coriginal,s)+d(s,cother).
I So, 2k +1≤ k +d(s,cother).
I So, d(s,cother)≥ k +1.
I So s is closer to coriginal than any other codeword.
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Reed-Solomon Codes Revisited

Given a message m = (m0,m1, . . . ,mn−1). . .

I Define Pm(x) = mn−1xn−1 + · · ·+m1x +m0.
I Send the codeword

(0,Pm(0)),(1,Pm(1)), . . . ,(n+2k −1,Pm(n+2k −1)).

What are all the possible codewords?
All possible sets of n+2k points, which come from a

polynomial of degree ≤ n−1.



Reed-Solomon Codes Revisited

Given a message m = (m0,m1, . . . ,mn−1). . .
I Define Pm(x) = mn−1xn−1 + · · ·+m1x +m0.

I Send the codeword
(0,Pm(0)),(1,Pm(1)), . . . ,(n+2k −1,Pm(n+2k −1)).

What are all the possible codewords?
All possible sets of n+2k points, which come from a

polynomial of degree ≤ n−1.



Reed-Solomon Codes Revisited

Given a message m = (m0,m1, . . . ,mn−1). . .
I Define Pm(x) = mn−1xn−1 + · · ·+m1x +m0.
I Send the codeword

(0,Pm(0)),(1,Pm(1)), . . . ,(n+2k −1,Pm(n+2k −1)).

What are all the possible codewords?
All possible sets of n+2k points, which come from a

polynomial of degree ≤ n−1.



Reed-Solomon Codes Revisited

Given a message m = (m0,m1, . . . ,mn−1). . .
I Define Pm(x) = mn−1xn−1 + · · ·+m1x +m0.
I Send the codeword

(0,Pm(0)),(1,Pm(1)), . . . ,(n+2k −1,Pm(n+2k −1)).

What are all the possible codewords?

All possible sets of n+2k points, which come from a
polynomial of degree ≤ n−1.



Reed-Solomon Codes Revisited

Given a message m = (m0,m1, . . . ,mn−1). . .
I Define Pm(x) = mn−1xn−1 + · · ·+m1x +m0.
I Send the codeword

(0,Pm(0)),(1,Pm(1)), . . . ,(n+2k −1,Pm(n+2k −1)).

What are all the possible codewords?
All possible sets of n+2k points, which come from a

polynomial of degree ≤ n−1.



Hamming Distance of Reed-Solomon Codes

Codewords: All possible sets of n+2k points, which come from
a polynomial of degree ≤ n−1.

What is the minimum Hamming distance between distinct
codewords?

Consider two codewords:
c1: (0,P1(0)),(1,P1(0)), . . . ,(n+2k −1,P1(n+2k −1))
c2: (0,P2(0)),(1,P2(0)), . . . ,(n+2k −1,P2(n+2k −1))

If d(c1,c2)≤ 2k , then:
P1 and P2 share n points.

But n points uniquely determine degree ≤ n−1 polynomials.
So P1 = P2.

The minimum Hamming distance is 2k +1.
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General Errors with Reed-Solomon Codes

Reed-Solomon with n+2k packets gives a code with minimum
Hamming distance ≥ 2k +1 between distinct codewords.

By our theorem, this can correct k general errors.

What is the decoding algorithm?
I Take your message m = (m0,m1, . . . ,mn−1).
I Define P(x) = mn−1xn−1 + · · ·+m1x +m0.
I Send codeword
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I The codeword suffers at most k corruptions.
I Receiver decodes by searching for the closest codeword to

the received message.

Can we avoid exhaustive search?
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Berlekamp-Welch Decoding Algorithm

Berlekamp and Welch patented an efficient decoding algorithm
for Reed-Solomon codes.

Let R0,R1, . . . ,Rn−2k+1 be the received packets. These packets
are potentially corrupted!

Suppose there are errors at the values e1, . . . ,ek . The error
locator polynomial is:

E(x) = (x−e1) · · ·(x−ek ).

The roots of E are the locations of the errors.

Key Lemma: For all i = 0,1, . . . ,n+2k −1, we have:

P(i)E(i) = RiE(i).
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Berlekamp-Welch Lemma

Key Lemma: For all i = 0,1, . . . ,n+2k −1, we have:

P(i)E(i) = RiE(i).

Proof.
I Case 1: i is an error. Then, E(i) = 0. Both sides are zero.
I Case 2: i is not an error. Then, P(i) = Ri .

Multiplying by the error locator polynomial “nullifies” the
corruptions.

Problem: We do not know the locations of the errors.
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Berlekamp-Welch Decoding

P(i)E(i) = RiE(i) for i = 0,1, . . . ,n+2k −1.

Since degE = k , then E(x) = xk +ak−1xk−1 + · · ·+a1x +a0 for
k unknown coefficients a0,a1, . . . ,ak−1.

Note: Leading coefficient is one!

Define Q(x) := P(x)E(x).
Then, degQ = degE +degP = n+k −1.

So Q(x) = bn+k−1xn+k−1 + · · ·+b1x +b0 for n+k unknown
coefficients b0,b1, . . . ,bn+k−1.

We have n+2k unknown coefficients. But we also have n+2k
equations!
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The Equations Are Linear

Unknowns: a0,a1, . . . ,ak−1,b0,b1, . . . ,bn+k−1.
Equations: Q(i) = RiE(i) for i = 0,1, . . . ,n+2k −1.

Equations, again:

bn+k−1in+k−1 + · · ·+b1i +b0 = Ri(ik +ak−1ik−1 + · · ·+a1i +a0).

The equations are linear in the unknown variables.

Solve the linear system using methods from linear algebra.
Gaussian elimination.

Note: Linear algebra works over fields.
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Recovering the Encoding Polynomial

Solve a linear system, recover the coefficients of E and Q.

Note that Q(x) = P(x)E(x), so we recover:

P(x) =
Q(x)
E(x)

.

We have recovered the polynomial P, and therefore the
message.

The Berlekamp-Welch decoding algorithm is more efficient.
I Solving a linear system is much faster than exhaustive

search of codewords.
I With more tricks, we can reduce the linear system (with

n+2k equations) into a system with only k equations.
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Comparison with Brute Force

Receive R0,R1, . . . ,Rn+2k−1.

Where are the corrupted packets? Brute force approach:
I We will learn counting soon.
I There are

(n+2k
k

)
subsets of R0,R1, . . . ,Rn+2k−1.

I For each such subset, try fitting a polynomial of degree
≤ n−1 which fits the remaining n+k points.

I It is possible to bound:(
n+2k
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≥
(n+2k
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.

The complexity grows exponentially with k .
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Summary

I Two ways to encode information in a polynomial: as
values, or as coefficients.

I Secret sharing: Encode secret in polynomial, hand out
“shares” of the polynomial to officials.

I If any k officials come together, they know the secret, but
k −1 officials know nothing.

I If minimum Hamming distance between distinct codewords
is 2k +1, then correct k general errors.

I Reed-Solomon codes: Interpolate a polynomial through n
packets and send values of the polynomial.

I To correct k erasure errors, send n+k .
I To correct k general errors, send n+2k .

I The error locator polynomial E has a root at every error.
I Berlekamp-Welch decoding: Q(x) = P(x)E(x), solve for

the coefficients of E and Q using Q(i) = RiE(i).


