Communicating with Errors

Someone sends you a message:

"As mmbrof teGreek commniand art of n oft oranzins thesis hihly offesive."

As you can see, parts of the message have been lost.

How can we transmit messages so that the receiver can *recover* the original message if there are *errors*?

Today: Use polynomials to share secrets and correct errors.

Review of Polynomials

- ► "d + 1 distinct points uniquely determine a degree ≤ d polynomial."
- From the d + 1 points we can find an *interpolating* polynomial via Lagrange interpolation (or linear algebra).
- ► The results about polynomials hold over *fields*.

Why do we use finite fields such as $\mathbb{Z}/p\mathbb{Z}$ (*p* prime)?

- Computations are fast.
- Computations are *precise*; no need for floating point arithmetic.
- As a result, finite fields are *reliable*.

Nuclear Bombs

Think about the password for America's nuclear bombs.

"No one man should have all that power." – Kanye West

For safety, we want to require *k* government officials to agree before the nuclear bomb password is revealed.

- That is, if k government officials come together, they can access the password.
- ► But if k 1 or fewer officials come together, they cannot access the password.

In fact, we will design something stronger.

► If k - 1 officials come together, they know *nothing* about the password.

Shamir's Secret Sharing Scheme

Work in GF(p).

- 1. Encode the secret s as a_0 .
- 2. Pick $a_1, ..., a_{k-1}$ randomly in $\{0, 1, ..., p-1\}$. This defines a polynomial $P(x) := a_{k-1}x^{k-1} + \cdots + a 1x + a_0$.
- 3. For the *i*th government official, give him/her the share (*i*, *P*(*i*)).

Correctness: If any *k* officials come together, they can interpolate to find the polynomial *P*. Then evaluate P(0).

► *k* people know the secret.

No Information: If k - 1 officials come together, there are p possible polynomials that go through the k - 1 shares.

- But this is the same as number of possible secrets.
- The k-1 officials discover nothing new.

Implementation of Secret Sharing

How large must the prime p be?

- Larger than the number of people involved.
- Larger than the secret.

If the secret *s* has *n* bits, then the secret is $O(2^n)$. So we need $p > 2^n$.

The arithmetic is done with $\log p = O(n)$ bit numbers.

The runtime is a polynomial in the number of bits of the secret and the number of people, i.e., the scheme is *efficient*.

Sending Packets

You want to send a long message.

- In Internet communication, the message is divided up into smaller chunks called packets.
- So say you want to send *n* packets, $m_0, m_1, \ldots, m_{n-1}$.
- In information theory, we say that you send the packets across a channel.
- What happens if the channel is *imperfect*?
- First model: when you use the channel, it can drop any k of your packets.

Can we still communicate our message?

Reed-Solomon Codes

Encode the packets $m_0, m_1, \ldots, m_{n-1}$ as values of a polynomial $P(0), P(1), \ldots, P(n-1)$.

What is deg *P*? At most n-1. Remember: *n* points determine a degree $\leq n-1$ polynomial.

Then, send $(0, P(0)), (1, P(1)), \dots, (n+k-1, P(n+k-1))$ across the channel.

Note: If the channel drops packets, the receiver knows which packets are dropped.

Property of polynomials: If we receive *any n* packets, then we can interpolate to recover the message.

If the channel drops at most *k* packets, we are safe.

The message has packets $m_0, m_1, \ldots, m_{n-1}$.

Instead of encoding the messages as values of the polynomial, we can encode it as coefficients of the polynomial.

$$P(x) = m_{n-1}x^{n-1} + \cdots + m_1x + m_0.$$

Then, send $(0, P(0)), (1, P(1)), \dots, (n+k-1, P(n+k-1))$ as before.

Corruptions

Now you receive the following message:

"As d memkIrOcf tee GVwek tommcnity and X pZrt cf IneTof KVesZ oAcwWizytzoOs this ir higLly offensOvz."

Instead of letters being *erased*, letters are now corrupted. These are called **general errors**.

Can we still recover the original message?

In fact, Reed-Solomon codes still do the job!

A Broader Look at Coding

Suppose we want to send a length-*n* message, $m_0, m_1, \ldots, m_{n-1}$. Each packet is in $\mathbb{Z}/p\mathbb{Z}$. The message $(m_0, m_1, \ldots, m_{n-1})$ is in $(\mathbb{Z}/p\mathbb{Z})^n$.

We want to *encode* the message into $(\mathbb{Z}/p\mathbb{Z})^{n+k}$. The encoded message is *longer*, because redundancy recovers errors.

Let Encode : $(\mathbb{Z}/p\mathbb{Z})^n \to (\mathbb{Z}/p\mathbb{Z})^{n+k}$ be the encoding function. Let $\mathscr{C} := range(Encode)$ be the set of **codewords**. A codeword is a possible encoded message.

We want the codewords to be far apart. Separated codewords means we can tolerate errors.

Hamming Distance

Given two strings s_1 and s_2 , the **Hamming distance** $d(s_1, s_2)$ between two strings is the number of places where they differ.

Properties:

- $d(s_1, s_2) \ge 0$, with equality if and only if $s_1 = s_2$.
- Symmetry: $d(s_1, s_2) = d(s_2, s_1)$.
- Friangle Inequality: $d(s_1, s_3) \leq d(s_1, s_2) + d(s_2, s_3)$.

Proof of Triangle Inequality:

- Start with s₁.
- Change $d(s_1, s_2)$ symbols to get s_2 .
- Change $d(s_2, s_3)$ symbols to get s_3 .
- So s_1 and s_3 differ by at most $d(s_1, s_2) + d(s_2, s_3)$ symbols.

Hamming Distance & Error Correction

Theorem: A code can recover *k* general errors if the minimum Hamming distance between any two distinct codewords is at least 2k + 1.

Proof.

- Suppose we send the codeword *c*_{original}.
- It gets corrupted to a string *s* with $d(c_{\text{original}}, s) \leq k$.
- ► Consider a different codeword *c*_{other}.
- ▶ Then, $d(c_{\text{original}}, c_{\text{other}}) \leq d(c_{\text{original}}, s) + d(s, c_{\text{other}})$.
- ▶ So, $2k + 1 \le k + d(s, c_{other})$.
- ► So, $d(s, c_{\text{other}}) \ge k + 1$.
- ► So *s* is closer to c_{original} than any other codeword.

Reed-Solomon Codes Revisited

Given a message $m = (m_0, m_1, ..., m_{n-1})...$

- Define $P_m(x) = m_{n-1}x^{n-1} + \cdots + m_1x + m_0$.
- Send the codeword (0, P_m(0)), (1, P_m(1)), ..., (n+2k-1, P_m(n+2k-1)).

What are all the possible codewords?

All possible sets of n+2k points, which come from a polynomial of degree $\leq n-1$.

Hamming Distance of Reed-Solomon Codes

Codewords: All possible sets of n+2k points, which come from a polynomial of degree $\leq n-1$.

What is the minimum Hamming distance between distinct codewords?

Consider two codewords:

$$c_1: (0, P_1(0)), (1, P_1(0)), \dots, (n+2k-1, P_1(n+2k-1)) \\ c_2: (0, P_2(0)), (1, P_2(0)), \dots, (n+2k-1, P_2(n+2k-1))$$

If $d(c_1, c_2) \le 2k$, then:

 P_1 and P_2 share *n* points.

But *n* points uniquely determine degree $\leq n-1$ polynomials. So $P_1 = P_2$.

The minimum Hamming distance is 2k + 1.

General Errors with Reed-Solomon Codes

Reed-Solomon with n + 2k packets gives a code with minimum Hamming distance $\geq 2k + 1$ between distinct codewords.

By our theorem, this can correct *k* general errors.

What is the decoding algorithm?

- Take your message $m = (m_0, m_1, \ldots, m_{n-1})$.
- Define $P(x) = m_{n-1}x^{n-1} + \cdots + m_1x + m_0$.
- Send codeword (0, P(0)), (1, P(1)), ..., (n+2k-1, P(n+2k-1)).
- ► The codeword suffers at most *k* corruptions.
- Receiver decodes by searching for the closest codeword to the received message.

Can we avoid exhaustive search?

Berlekamp-Welch Decoding Algorithm

Berlekamp and Welch patented an *efficient* decoding algorithm for Reed-Solomon codes.

Let $R_0, R_1, \ldots, R_{n-2k+1}$ be the received packets. These packets are potentially corrupted!

Suppose there are errors at the values e_1, \ldots, e_k . The **error locator polynomial** is:

$$E(x) = (x - e_1) \cdots (x - e_k).$$

The roots of *E* are the locations of the errors.

Key Lemma: For all $i = 0, 1, \dots, n+2k-1$, we have:

$$P(i)E(i)=R_iE(i).$$

Berlekamp-Welch Lemma

Key Lemma: For all $i = 0, 1, \dots, n+2k-1$, we have:

$$P(i)E(i)=R_iE(i).$$

Proof.

- Case 1: *i* is an error. Then, E(i) = 0. Both sides are zero.
- ▶ Case 2: *i* is not an error. Then, $P(i) = R_i$. □

Multiplying by the error locator polynomial "nullifies" the corruptions.

Problem: We do not know the locations of the errors.

Berlekamp-Welch Decoding

 $P(i)E(i) = R_iE(i)$ for i = 0, 1, ..., n+2k-1.

Since deg E = k, then $E(x) = x^k + a_{k-1}x^{k-1} + \dots + a_1x + a_0$ for k unknown coefficients a_0, a_1, \dots, a_{k-1} .

Note: Leading coefficient is one!

Define
$$Q(x) := P(x)E(x)$$
.
Then, deg $Q = \deg E + \deg P = n + k - 1$.

So $Q(x) = b_{n+k-1}x^{n+k-1} + \cdots + b_1x + b_0$ for n+k unknown coefficients $b_0, b_1, \dots, b_{n+k-1}$.

We have n+2k unknown coefficients. But we also have n+2k equations!

The Equations Are Linear

Unknowns: $a_0, a_1, ..., a_{k-1}, b_0, b_1, ..., b_{n+k-1}$. Equations: $Q(i) = R_i E(i)$ for i = 0, 1, ..., n+2k-1.

Equations, again:

$$b_{n+k-1}i^{n+k-1} + \cdots + b_1i + b_0 = R_i(i^k + a_{k-1}i^{k-1} + \cdots + a_1i + a_0).$$

The equations are linear in the unknown variables.

Solve the linear system using methods from linear algebra. Gaussian elimination.

Note: Linear algebra works over fields.

Recovering the Encoding Polynomial

Solve a linear system, recover the coefficients of *E* and *Q*.

Note that Q(x) = P(x)E(x), so we recover:

$$P(x)=\frac{Q(x)}{E(x)}.$$

We have recovered the polynomial *P*, and therefore the message.

The Berlekamp-Welch decoding algorithm is more efficient.

- Solving a linear system is much faster than exhaustive search of codewords.
- ► With more tricks, we can reduce the linear system (with n+2k equations) into a system with only k equations.

Unique Solution?

Is the solution to the linear system unique? Not if there are fewer than *k* errors.

Can we solve for the "wrong" E and Q?

Theorem: Any solutions *E* and *Q* have Q(x)/E(x) = P(x).

Proof.

- ► Let (E, Q) be *any* solution to the linear system. So, $Q(i) = R_i E(i)$ for n + 2k values of *i*.
- ► There are at most k errors so R_i = P(i) for at least n+k values of i.
- So Q(i) = P(i)E(i) for n+k values of i. But these are degree n+k−1 polynomials.
- So Q(x) = P(x)E(x) for all x.

Comparison with Brute Force

Receive $R_0, R_1, ..., R_{n+2k-1}$.

Where are the corrupted packets? Brute force approach:

- We will learn counting soon.
- There are $\binom{n+2k}{k}$ subsets of $R_0, R_1, \ldots, R_{n+2k-1}$.
- For each such subset, try fitting a polynomial of degree $\leq n-1$ which fits the remaining n+k points.
- It is possible to bound:

$$\binom{n+2k}{k} \geq \left(\frac{n+2k}{k}\right)^k.$$

The complexity grows exponentially with k.

Summary

- Two ways to encode information in a polynomial: as values, or as coefficients.
- Secret sharing: Encode secret in polynomial, hand out "shares" of the polynomial to officials.
 - ► If any k officials come together, they know the secret, but k-1 officials know nothing.
- If minimum Hamming distance between distinct codewords is 2k+1, then correct k general errors.
- Reed-Solomon codes: Interpolate a polynomial through n packets and send values of the polynomial.
 - To correct *k* erasure errors, send n + k.
 - To correct k general errors, send n+2k.
- ► The error locator polynomial *E* has a root at every error.
- ► Berlekamp-Welch decoding: Q(x) = P(x)E(x), solve for the coefficients of E and Q using Q(i) = R_iE(i).