Communicating with Errors

Someone sends you a message:
"'As mmbrof teGreek commniand art of n oft oranzins thsis hihly offesive."
As you can see, parts of the message have been lost.
How can we transmit messages so that the receiver can recover the original message if there are errors?

Today: Use polynomials to share secrets and correct errors.

Shamir's Secret Sharing Scheme

Work in $\operatorname{GF}(p)$.

1. Encode the secret s as a_{0}.
2. Pick a_{1}, \ldots, a_{k-1} randomly in $\{0,1, \ldots, p-1\}$. This defines a polynomial $P(x):=a_{k-1} x^{k-1}+\cdots+a-1 x+a_{0}$.
3. For the i th government official, give him/her the share (i,P(i)).

Correctness: If any k officials come together, they can interpolate to find the polynomial P. Then evaluate $P(0)$.

- k people know the secret.

No Information: If $k-1$ officials come together, there are p possible polynomials that go through the $k-1$ shares.

- But this is the same as number of possible secrets
- The $k-1$ officials discover nothing new.

Review of Polynomials

- " $d+1$ distinct points uniquely determine a degree $\leq d$ polynomial."
- From the $d+1$ points we can find an interpolating polynomial via Lagrange interpolation (or linear algebra).
- The results about polynomials hold over fields.

Why do we use finite fields such as $\mathbb{Z} / p \mathbb{Z}$ (p prime)?

- Computations are fast.
- Computations are precise; no need for floating point arithmetic.
- As a result, finite fields are reliable.

Implementation of Secret Sharing

How large must the prime p be?

- Larger than the number of people involved.
- Larger than the secret.

If the secret s has n bits, then the secret is $O\left(2^{n}\right)$. So we need $p>2^{n}$.

The arithmetic is done with $\log p=O(n)$ bit numbers
The runtime is a polynomial in the number of bits of the secret and the number of people, i.e., the scheme is efficient.

Nuclear Bombs

Think about the password for America's nuclear bombs.

- "No one man should have all that power." - Kanye West

For safety, we want to require k government officials to agree before the nuclear bomb password is revealed.

- That is, if k government officials come together, they can access the password
- But if $k-1$ or fewer officials come together, they cannot access the password.

In fact, we will design something stronger

- If $k-1$ officials come together, they know nothing about the password

Sending Packets

You want to send a long message

- In Internet communication, the message is divided up into smaller chunks called packets.
- So say you want to send n packets, $m_{0}, m_{1}, \ldots, m_{n-1}$.
- In information theory, we say that you send the packets across a channel.
- What happens if the channel is imperfect?
- First model: when you use the channel, it can drop any k of your packets.

Can we still communicate our message?

Reed-Solomon Codes

Encode the packets $m_{0}, m_{1}, \ldots, m_{n-1}$ as values of a polynomial $P(0), P(1), \ldots, P(n-1)$.

What is $\operatorname{deg} P$? At most $n-1$. Remember: n points determine a degree $\leq n-1$ polynomial.

Then, send $(0, P(0)),(1, P(1)), \ldots,(n+k-1, P(n+k-1))$ across the channel.

- Note: If the channel drops packets, the receiver knows which packets are dropped.

Property of polynomials: If we receive any n packets, then we can interpolate to recover the message.

If the channel drops at most k packets, we are safe.

A Broader Look at Coding

Suppose we want to send a length- n message,
$m_{0}, m_{1}, \ldots, m_{n-1}$. Each packet is in $\mathbb{Z} / p \mathbb{Z}$.
The message $\left(m_{0}, m_{1}, \ldots, m_{n-1}\right)$ is in $(\mathbb{Z} / p \mathbb{Z})^{n}$.
We want to encode the message into $(\mathbb{Z} / p \mathbb{Z})^{n+k}$. The encoded message is longer, because redundancy recovers errors.
Let Encode : $(\mathbb{Z} / p \mathbb{Z})^{n} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{n+k}$ be the encoding function. Let $\mathscr{C}:=$ range(Encode) be the set of codewords.
A codeword is a possible encoded message.
We want the codewords to be far apart. Separated codewords means we can tolerate errors

Alternative Encoding

The message has packets $m_{0}, m_{1}, \ldots, m_{n-1}$.
Instead of encoding the messages as values of the polynomial we can encode it as coefficients of the polynomial

$$
P(x)=m_{n-1} x^{n-1}+\cdots+m_{1} x+m_{0} .
$$

Then, send $(0, P(0)),(1, P(1)), \ldots,(n+k-1, P(n+k-1))$ as before

Hamming Distance

Given two strings s_{1} and s_{2}, the Hamming distance $d\left(s_{1}, s_{2}\right)$ between two strings is the number of places where they differ.

Properties:

- $d\left(s_{1}, s_{2}\right) \geq 0$, with equality if and only if $s_{1}=s_{2}$.
- Symmetry: $d\left(s_{1}, s_{2}\right)=d\left(s_{2}, s_{1}\right)$.
- Triangle Inequality: $d\left(s_{1}, s_{3}\right) \leq d\left(s_{1}, s_{2}\right)+d\left(s_{2}, s_{3}\right)$

Proof of Triangle Inequality:

- Start with s_{1}.
- Change $d\left(s_{1}, s_{2}\right)$ symbols to get s_{2}
- Change $d\left(s_{2}, s_{3}\right)$ symbols to get s_{3}
- So s_{1} and s_{3} differ by at most $d\left(s_{1}, s_{2}\right)+d\left(s_{2}, s_{3}\right)$ symbols. \square

Corruptions

Now you receive the following message:

"As d memklrOcf tee GVwek tommcnity and X pZrt cf IneTof KVesZ oAcwWizytzoOs this ir higLly offensOvz."
Instead of letters being erased, letters are now corrupted. These are called general errors.

Can we still recover the original message?
In fact, Reed-Solomon codes still do the job!

Hamming Distance \& Error Correction

Theorem: A code can recover k general errors if the minimum Hamming distance between any two distinct codewords is at least $2 k+1$.

Proof.

- Suppose we send the codeword $c_{\text {original }}$.
- It gets corrupted to a string s with $d\left(c_{\text {original }}, s\right) \leq k$.
- Consider a different codeword $c_{\text {other }}$.
- Then, $d\left(c_{\text {original }}, c_{\text {other }}\right) \leq d\left(c_{\text {original }}, s\right)+d\left(s, c_{\text {other }}\right)$

So, $2 k+1 \leq k+d\left(s, c_{\text {other }}\right)$.
So, $d\left(s, c_{\text {other }}\right) \geq k+1$.

- So s is closer to $C_{\text {original }}$ than any other codeword. \square

Reed-Solomon Codes Revisited

Given a message $m=\left(m_{0}, m_{1}, \ldots, m_{n-1}\right) \ldots$

- Define $P_{m}(x)=m_{n-1} x^{n-1}+\cdots+m_{1} x+m_{0}$.
- Send the codeword
$\left(0, P_{m}(0)\right),\left(1, P_{m}(1)\right), \ldots,\left(n+2 k-1, P_{m}(n+2 k-1)\right)$.
What are all the possible codewords?
All possible sets of $n+2 k$ points, which come from a polynomial of degree $\leq n-1$.

Berlekamp-Welch Decoding Algorithm

Berlekamp and Welch patented an efficient decoding algorithm

 for Reed-Solomon codes.Let $R_{0}, R_{1}, \ldots, R_{n-2 k+1}$ be the received packets. These packets are potentially corrupted!

Suppose there are errors at the values e_{1}, \ldots, e_{k}. The error locator polynomial is:

$$
E(x)=\left(x-e_{1}\right) \cdots\left(x-e_{k}\right)
$$

The roots of E are the locations of the errors.
Key Lemma: For all $i=0,1, \ldots, n+2 k-1$, we have:

$$
P(i) E(i)=R_{i} E(i) .
$$

Hamming Distance of Reed-Solomon Codes

Codewords: All possible sets of $n+2 k$ points, which come from a polynomial of degree $\leq n-1$.

What is the minimum Hamming distance between distinct codewords?

Consider two codewords:
$c_{1}:\left(0, P_{1}(0)\right),\left(1, P_{1}(0)\right), \ldots,\left(n+2 k-1, P_{1}(n+2 k-1)\right)$
$c_{2}:\left(0, P_{2}(0)\right),\left(1, P_{2}(0)\right), \ldots,\left(n+2 k-1, P_{2}(n+2 k-1)\right)$
If $d\left(c_{1}, c_{2}\right) \leq 2 k$, then:
P_{1} and P_{2} share n points
But n points uniquely determine degree $\leq n-1$ polynomials So $P_{1}=P_{2}$
The minimum Hamming distance is $2 k+1$

Berlekamp-Welch Lemma

Key Lemma: For all $i=0,1, \ldots, n+2 k-1$, we have:

$$
P(i) E(i)=R_{i} E(i)
$$

Proof.

- Case 1: i is an error. Then, $E(i)=0$. Both sides are zero.
- Case 2: i is not an error. Then, $P(i)=R_{i} . \quad \square$

Multiplying by the error locator polynomial "nullifies" the corruptions

Problem: We do not know the locations of the errors

General Errors with Reed-Solomon Codes

Reed-Solomon with $n+2 k$ packets gives a code with minimum Hamming distance $\geq 2 k+1$ between distinct codewords.

By our theorem, this can correct k general errors
What is the decoding algorithm?

- Take your message $m=\left(m_{0}, m_{1}, \ldots, m_{n-1}\right)$.
- Define $P(x)=m_{n-1} x^{n-1}+\cdots+m_{1} x+m_{0}$.
- Send codeword
$(0, P(0)),(1, P(1)), \ldots,(n+2 k-1, P(n+2 k-1))$.
- The codeword suffers at most k corruptions.
- Receiver decodes by searching for the closest codeword to the received message.

Can we avoid exhaustive search?

Berlekamp-Welch Decoding

$$
P(i) E(i)=R_{i} E(i) \quad \text { for } i=0,1, \ldots, n+2 k-1 .
$$

Since $\operatorname{deg} E=k$, then $E(x)=x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$ for
k unknown coefficients $a_{0}, a_{1}, \ldots, a_{k-1}$.
Note: Leading coefficient is one!
Define $Q(x):=P(x) E(x)$.
Then, $\operatorname{deg} Q=\operatorname{deg} E+\operatorname{deg} P=n+k-1$.
So $Q(x)=b_{n+k-1} x^{n+k-1}+\cdots+b_{1} x+b_{0}$ for $n+k$ unknown coefficients $b_{0}, b_{1}, \ldots, b_{n+k-1}$.

We have $n+2 k$ unknown coefficients. But we also have $n+2 k$ equations!

The Equations Are Linear

Unknowns: $a_{0}, a_{1}, \ldots, a_{k-1}, b_{0}, b_{1}, \ldots, b_{n+k-1}$.
Equations: $Q(i)=R_{i} E(i)$ for $i=0,1, \ldots, n+2 k-1$
Equations, again:
$b_{n+k-1} i^{n+k-1}+\cdots+b_{1} i+b_{0}=R_{i}\left(i^{k}+a_{k-1} i^{k-1}+\cdots+a_{1} i+a_{0}\right)$.
The equations are linear in the unknown variables.
Solve the linear system using methods from linear algebra Gaussian elimination.

Note: Linear algebra works over fields.

Comparison with Brute Force

Receive $R_{0}, R_{1}, \ldots, R_{n+2 k-1}$.
Where are the corrupted packets? Brute force approach:

- We will learn counting soon
- There are $\binom{n+2 k}{k}$ subsets of $R_{0}, R_{1}, \ldots, R_{n+2 k-1}$.
- For each such subset, try fitting a polynomial of degree $\leq n-1$ which fits the remaining $n+k$ points.
- It is possible to bound:

$$
\binom{n+2 k}{k} \geq\left(\frac{n+2 k}{k}\right)^{k}
$$

The complexity grows exponentially with k.

Recovering the Encoding Polynomial

Solve a linear system, recover the coefficients of E and Q.
Note that $Q(x)=P(x) E(x)$, so we recover:

$$
P(x)=\frac{Q(x)}{E(x)}
$$

We have recovered the polynomial P, and therefore the message.

The Berlekamp-Welch decoding algorithm is more efficient.

- Solving a linear system is much faster than exhaustive search of codewords.
- With more tricks, we can reduce the linear system (with $n+2 k$ equations) into a system with only k equations.

Summary

- Two ways to encode information in a polynomial: as values, or as coefficients.
- Secret sharing: Encode secret in polynomial, hand out "shares" of the polynomial to officials
- If any k officials come together, they know the secret, but $k-1$ officials know nothing
- If minimum Hamming distance between distinct codewords is $2 k+1$, then correct k general errors.
- Reed-Solomon codes: Interpolate a polynomial through n packets and send values of the polynomial.
- To correct k erasure errors, send $n+k$.
- To correct k general errors, send $n+2 k$.
- The error locator polynomial E has a root at every error.
- Berlekamp-Welch decoding: $Q(x)=P(x) E(x)$, solve for the coefficients of E and Q using $Q(i)=R_{i} E(i)$.

Unique Solution?

Is the solution to the linear system unique? Not if there are fewer than k errors.
Can we solve for the "wrong" E and Q ?
Theorem: Any solutions E and Q have $Q(x) / E(x)=P(x)$. Proof.

- Let (E, Q) be any solution to the linear system. So, $Q(i)=R_{i} E(i)$ for $n+2 k$ values of i.
- There are at most k errors so $R_{i}=P(i)$ for at least $n+k$ values of i.
- So $Q(i)=P(i) E(i)$ for $n+k$ values of i. But these are degree $n+k-1$ polynomials.
- So $Q(x)=P(x) E(x)$ for all x. \square

