
CS 70 Discrete Mathematics and Probability Theory
Fall 2017 Course Notes Note 9
We will consider two situations in which we wish to convey information on an unreliable channel. The first is
exemplified by the internet, where the information (say a file) is broken up into packets, and the unreliability
is manifest in the fact that some of the packets are lost (or erased) during transmission. Moreover the packets
are labeled with headers so that the recipient knows exactly which packets were received and which were
dropped. We will refer to such errors as erasure errors. See the figure below:

In the second situation, some of the packets are corrupted during transmission due to channel noise. Now
the recipient has no idea which packets were corrupted and which were received unmodified:

In the above example, packets 1 and 4 are corrupted. These types of errors are called general errors. We
will discuss methods of encoding messages, called error correcting codes, which are capable of correcting
both erasure and general errors. The principle is to embed a message into a codeword (a process called
encoding), transmit the codeword, and then recover the message from the damaged/corrupted symbols that
are received (a process called decoding).

This area of study is a part of “Information Theory,” one of the core computer sciences1 along with the theory
of computation, control theory, communication theory, and estimation/learning theory. At the National
Science Foundation, these are (largely) currently in the Computer and Information Science and Engineering
(CISE) directorate in the Division of Computing and Communication Foundations (CCF). In particular,
there is a rich area of coding theory and here in this note, we will simply touch a little part of it. If you want
to learn more, this material is built upon in 121, 229b, 229a, and other courses.

On the practical side, this material is intensely useful. Every time you use your cellphone, satellite TV, DSL,
cable-modem, hard-disk drive, solid-state drive, CD-ROM, DVD, Blu-ray, etc., error correcting codes are
crucial. Related ideas are being deployed in the Internet for streaming and in modern data-centers to make
cloud computing and distributed storage possible. Perhaps most surprisingly, the actual (polynomial-based)
codes that you are studying in this lecture notes are called Reed-Solomon2 codes and are essentially what are
used in many applications. These are representative of what are called algebraic-geometry codes, because
of their connections to algebraic geometry — the branch of mathematics that studies the roots of polynomial

1This is also reflected in an interesting history. The IEEE was formed by the merger of two societies — the Institute of Radio
Engineers and the American Institute of Electrical Engineers. The Radio Engineers were intimately involved with communication,
cryptography, radar, etc. The IRE and AIEE merged to form the IEEE in 1963, but the IRE was already bigger than the AIEE by
1957. This merger was natural because electronics was becoming an important implementation substrate for both sets of engineers
and the modern theory of electrical systems used the same mathematics as radio and signal processing (as well as control). This is
why the word “EE” is often used to describe these computer sciences. At Berkeley, of course, this is all just a historical footnote
since you simply experience EECS as a single entity, but the history remains in some of the course numbers.

2Like RSA, these carry the names of their inventors Reed and Solomon. The modern use of these codes is largely related to what
are called BCH codes, named after Bose, Chaudhuri, and Hocquenghem. We cannot get into these differences but the Wikipedia
articles here are pretty decent.

CS 70, Fall 2017, Note 9 1

equations.

Returning to the problem at hand. Assume that the information consists of n packets3 . We can assume
without loss of generality that the contents of each packet is a number modulo q (denoted by GF(q)), where
q is a prime. For example, the contents of the packet might be a 32-bit string and can therefore be regarded
as a number between 0 and 232−1; then we could choose q to be any prime4 larger than 232. The properties
of polynomials over GF(q) (i.e., with coefficients and values reduced modulo q) are the backbone of both
error-correcting schemes. To see this, let us denote the message to be sent by m1, . . . ,mn and make the
following crucial observations:

1) There is a unique polynomial P(x) of degree n−1 such that P(i) = mi for 1 ≤ i ≤ n (i.e., P(x) contains
all of the information about the message, and evaluating P(i) gives the intended contents of the i-th packet).

2) The message to be sent is now m1 = P(1), . . . ,mn = P(n). We can generate additional packets by evaluat-
ing P(x) at additional points n+1,n+2, . . . ,n+ j (remember, our transmitted codeword must be redundant,
i.e., it must contain more packets than the original message to account for the lost or corrupted packets).
Thus the transmitted codeword is c1 = P(1),c2 = P(2), . . . ,cn+ j = P(n+ j). (Alternatively, we can use the
n numbers defining the message as the coefficients of a degree n− 1 polynomial directly. Either way, the
transmitted codeword will be evaluations of this polynomial.) Since we are working modulo q, we must
make sure that n+ j ≤ q, but this condition does not impose a serious constraint since q is presumed to be
very large.

Erasure Errors
Here we consider the setting of packets being sent over the internet. In this setting, the packets are la-
beled and so the recipient knows exactly which packets were dropped during transmission. One additional
observation will be useful:

3) By Property 2 in Note 7, we can uniquely reconstruct P(x) from its values at any n distinct points, since
it has degree n− 1. This means that P(x) can be reconstructed from any n of the transmitted packets.
Evaluating this reconstructed polynomial P(x) at x = 1, . . . ,n yields the original message m1, . . . ,mn. (Or
alternatively, if the message was encoded into the polynomial’s coefficients, we could just read the message
out by simplifying the polynomial.)

Recall that in our scheme, the transmitted codeword is c1 = P(1),c2 = P(2), . . . ,cn+ j = P(n+ j). Thus, if
we hope to be able to correct k errors, we simply need to set j = k. The encoded codeword will then consist
of n+ k packets.

Example

Suppose Alice wants to send Bob a message of n = 4 packets and she wants to guard against k = 2 lost
packets. Then, assuming the packets can be coded up as integers between 0 and 6, Alice can work over
GF(7) (since 7 ≥ n+ k = 6). Suppose the message that Alice wants to send to Bob is m1 = 3, m2 = 1,
m3 = 5, and m4 = 0. She interpolates to find the unique polynomial of degree n−1 = 3 described by these
4 points: P(x) = x3 +4x2 +5 (verify that P(i) = mi for 1≤ i≤ 4).

3Where do packets come from? They are little pieces of information obtained by chopping up whatever actual message that we
have.

4In real-world implementations, we do not do this. Instead, we work directly in finite fields that have size 232 because that
is a prime power and working with fields that are a power-of-two in size is convenient for computer operations. However, the
construction of such fields is beyond the scope of 70.

CS 70, Fall 2017, Note 9 2

Since k = 2, Alice must evaluate P(x) at 2 extra points: P(5) = 6 and P(6) = 1. Now, Alice can transmit the
encoded codeword which consists of n+ k = 6 packets, where c j = P(j) for 1 ≤ j ≤ 6. So c1 = P(1) = 3,
c2 = P(2) = 1, c3 = P(3) = 5, c4 = P(4) = 0, c5 = P(5) = 6, and c6 = P(6) = 1. Suppose packets 2 and 6
are dropped, in which case we have the following situation:

From the values that Bob received (3, 5, 0, and 6), he uses Lagrange interpolation and computes the follow-
ing delta functions:

∆1(x) =
(x−3)(x−4)(x−5)

−24

∆3(x) =
(x−1)(x−4)(x−5)

4

∆4(x) =
(x−1)(x−3)(x−5)

−3

∆5(x) =
(x−1)(x−3)(x−4)

8
.

He then reconstructs the polynomial P(x) = (3)∆1(x)+(5)∆3(x)+(0)∆4(x)+(6)∆5(x) = x3+4x2+5. Bob
then evaluates m2 = P(2) = 1, which is the packet that was lost from the original codeword. More generally,
no matter which two packets were dropped, following the same method Bob could still have reconstructed
P(x) and thus the original message.

Let us consider what would happen if Alice sent one fewer packet. If Alice only sent c j for 1 ≤ j ≤
n+ k−1, then with k erasures, Bob would only receive c j for n−1 distinct values j. Thus, Bob would not
be able to reconstruct P(x) (since there are exactly q polynomials of degree at most n− 1 that agree with
the n− 1 packets which Bob received). This error-correcting scheme is therefore optimal: it can recover
the n characters of the message from any n received characters, but recovery from any fewer characters is
impossible.

Polynomial Interpolation
Let us take a brief digression to discuss another method of polynomial interpolation which will be useful in
handling general errors. The goal of the algorithm will be to take as input d+1 pairs (x1,y1), . . . ,(xd+1,yd+1),
and output the polynomial p(x) = adxd + · · ·+a1x+a0 such that p(xi) = yi for i = 1 to d +1.

The first step of the algorithm is to write a system of d+1 linear equations in d+1 variables: the coefficients
of the polynomial a0, . . . ,ad . Each equation is obtained by fixing x to be one of d + 1 values: x1, . . . ,xd+1.
Note that in p(x), x is a variable and a0, . . . ,ad are fixed constants. In the equations below, these roles are
swapped: xi is a fixed constant and a0, . . . ,ad are variables. For example, the i-th equation is the result of
fixing x to be xi: adxd

i +ad−1xd−1
i + . . .+a0 = yi.

Now solving these equations gives the coefficients of the polynomial p(x). For example, given the 3 pairs
(−1,2), (0,1), and (2,5), we will construct the degree 2 polynomial p(x) which goes through these points.
The first equation says a2(−1)2 + a1(−1)+ a0 = 2. Simplifying, we get a2− a1 + a0 = 2. Similarly, the
second equation says a2(0)2+a1(0)+a0 = 1, or a0 = 1. And the third equation says a2(2)2+a1(2)+a0 = 5

CS 70, Fall 2017, Note 9 3

So we get the following system of equations:

a2−a1 +a0 = 2

a0 = 1

4a2 +2a1 +a0 = 5

Substituting for a0 and multiplying the first equation by 2 we get:

2a2−2a1 = 2

4a2 +2a1 = 4

Then, adding the two equations we find that 6a2 = 6, so a2 = 1, and plugging back in we find that a1 = 0.
Thus, we have determined the polynomial p(x) = x2 + 1. To justify this method more carefully, we must
show that the equations always have a solution and that it is unique. This involves showing that a certain
determinant is non-zero, which we will leave as an exercise5.

General Errors
Now let us return to general errors. General errors are much more challenging to correct than erasure errors.
This is because packets are corrupted, not erased and Bob no longer knows which packets are correct. As
we shall see shortly, Alice can still guard against k general errors, at the expense of transmitting only 2k
additional packets or characters (only twice as many as in the erasure case). Thus the encoded codeword
is c1, . . . ,cn+2k where c j = P(j) for 1 ≤ j ≤ n+ 2k. This means that at least n+ k of these characters are
received uncorrupted by Bob.

For example, if Alice wishes to send n = 4 characters to Bob via a modem in which k = 1 of the characters
is corrupted, she must redundantly send a codeword consisting of 6 characters. Suppose she wants to convey
the same message as above, and that c1 is corrupted and changed to r1 = 2. This scenario can be visualized
in the following figure:

Bob’s goal is to reconstruct P(x) from the n+ 2k received symbols r1, . . . ,rn+2k. He knows that P(i) must
equal ri on at least n+ k points (since only k points are corrupted), but he does not know which of the n+ k
values are correct. As an example, consider a possible scenario depicted in the picture below- the points
represent the symbols received from Alice, and the line represents P(x). In this example, n = 3, k = 1, and
the third packet is corrupted. Bob does not know the index at which the received symbols and the polynomial
deviate:

5It is an exercise because it involves thinking about linear algebra, and generalizing the ideas to finite fields. The key idea here
is that the monomials xk are linearly independent of each other as long as there aren’t too many of them relative to the size of the
finite field. This fact follows from the properties of polynomials already established. (Finding a nonzero linear combination of
monomials that equals zero everywhere is basically asking for a polynomial to have a lot of roots.)

CS 70, Fall 2017, Note 9 4

Bob attempts to construct P(x) by searching for a polynomial P′(x) with the following property: P′(i) = ri

for at least n+ k distinct values of i between 1 and n+2k. Of course, P(x) is one such polynomial. It turns
out6 that P(x) is actually the only polynomial with the desired property. Therefore, P′(x) must equal P(x).

Finding P(x) efficiently requires a remarkable idea, which is just about simple enough to be described here.
Suppose packets e1, . . . ,ek are corrupted. Define the degree k polynomial E(x) to be (x−e1) · · ·(x−ek). Let
us make a simple but crucial observation:

P(i)E(i) = riE(i) for 1≤ i≤ n+2k

(this is true at points i at which no error occurred since P(i) = ri, and trivially true at points i at which an
error occurred since E(i) = 0).

This observation forms the basis of a very clever algorithm invented by Berlekamp and Welch. Looking more
closely at these equalities, we will show that they can be cast as n+2k linear equations in n+2k unknowns.
The unknowns correspond to the coefficients of E(x) and Q(x) (where we define Q(x) = P(x)E(x)). Once
Q(x) and E(x) are known, we can divide Q(x) by E(x) to obtain P(x).

Since Q(x) is a polynomial of degree n+ k−1, it can be described by n+ k coefficients. E(x) is a degree k
polynomial, but its definition implies that its first coefficient must be 1. It can therefore be described by k
coefficients:

Q(x) = an+k−1xn+k−1 + · · ·+a1x+a0

E(x) = xk +bk−1xk−1 + · · ·+b1x+b0

As seen in the interpolation method above, once we fix a value i for x, Q(i) and E(i) are linear func-
tions of the unknown coefficients an+k−1, · · · ,a0 and bk−1, · · · ,b0 respectively. The received value ri is also
fixed. Therefore the equation Q(i) = riE(i) is a linear equation in the n+ 2k unknowns an+k−1, . . . ,a0 and
bk−1, . . . ,b0. We thus have at least n+2k linear equations, one for each value of i, and n+2k unknowns. We
can solve these equations and get E(x) and Q(x). We can then compute the ratio Q(x)

E(x) to obtain P(x).

Example

Suppose we are working over GF(7) and Alice wants to send Bob the n = 3 characters “3,” “0,” and “6”
over a modem. Turning to the analogy of the English alphabet, this is equivalent to using only the first 7

6Can you prove this? You should be able to. Assume that there are no more than k errors. Now suppose there were a second
polynomial of degree n−1 that agreed with the received symbols in n+k positions. This means that it must also agree with the true
P(x) in n positions since there cannot be more than k errors. But then, property 2 of polynomials tells us that this second polynomial
must in fact be equal to the original polynomial since n points uniquely specify a polynomial of degree at most n−1.

CS 70, Fall 2017, Note 9 5

letters of the alphabet, where a = 0, . . . ,g = 6. So the message which Alice wishes for Bob to receive is
“dag”. Then Alice interpolates to find the polynomial

P(x) = x2 + x+1,

which is the unique polynomial of degree 2 such that P(1) = 3, P(2) = 0, and P(3) = 6.

She needs to transmit the codeword consisting of n+ 2k = 5 characters P(1) = 3, P(2) = 0, P(3) = 6,
P(4) = 0, and P(5) = 3 to Bob. Suppose P(1) is corrupted, so he receives 2 instead of 3 (i.e., Alice sends
the encoded codeword “dagad” but Bob instead receives “cagad”). Summarizing, we have the following
situation:

Let E(x) = x+ b0 be the error-locator polynomial—remember, Bob doesn’t know what b0 is yet since he
doesn’t know where the (single) error occurred. Let Q(x) = a3x3+a2x2+a1x+a0. Now Bob just substitutes
x = 1,x = 2, · · · ,x = 5 into Q(x) = rxE(x) and simplifies to get five linear equations in five unknowns. Recall
that we are working modulo 7 and that ri = c′i is the value Bob received for the ith character.

The first equation will be a3+a2+a1+a0 = 2(1+b0), which simplifies to a3+a2+a1+a0+5b0 = 2. Bob
can determine the remaining equations in the same manner, obtaining:

a3 +a2 +a1 +a0 +5b0 = 2

a3 +4a2 +2a1 +a0 = 0

6a3 +2a2 +3a1 +a0 +b0 = 4

a3 +2a2 +4a1 +a0 = 0

6a3 +4a2 +5a1 +a0 +4b0 = 1

Bob then solves this linear system and finds that a3 = 1, a2 = 0, a1 = 0, a0 = 6, and b0 = 6 (all mod 7). (As
a check, this implies that E(x) = x+6 = x−1, so the location of the error is position e1 = 1, which is correct
since the first character was corrupted from a “d” to a “c”.) This gives him the polynomials Q(x) = x3 +6
and E(x) = x− 1. He can then find P(x) by computing the quotient P(x) = Q(x)

E(x) =
x3+6
x−1 = x2 + x+ 1. Bob

notices that the first character was corrupted (since e1 = 1), so now that he has P(x), he just computes
P(1) = 3 = “d” and obtains the original, uncorrupted message “dag”.

It is very informative to try doing this example yourself with some modifications. What happens if instead
of changing the first character, we changed the second character? Do this and notice that everything still
works

What happens if we don’t change any character at all? (i.e. what happens when we think that there might
be a single error, but there isn’t any error.) This is something worth doing on your own ahead of lecture, and
then look at the footnote here7 for commentary. What happens if you change two characters instead of just
one?

7You will notice that in this case, the system of linear equations will become degenerate and will have multiple solutions. But
this is exactly what should happen. Why? You can place the error wherever you want and the system of equations will still be
consistent — the adversary has just replaced a value with itself! As a matter of calculation, you can simply choose any solution and
proceed to successful decoding.

CS 70, Fall 2017, Note 9 6

Finer points regarding Berlekamp-Welch

Two points need further discussion. How do we know that the n+2k equations are consistent? What if they
have no solution? This is simple. The equations must be consistent since Q(x) = P(x)E(x) together with the
true error locator polynomial E(x) gives a solution, as long as there are exactly k errors.

Now, from the perspective of what we know about systems of linear equations, we have only ruled out the
possibility of there being no solution. With n+2k equations and n+2k unknowns, the possibilities are that
we have exactly 1 solution or many solutions.

So, the core interesting question is this: how do we know that the n+2k equations are independent, i.e., how
do we know that there aren’t many other spurious solutions in addition to the correct solution that we are
looking for? Put more mathematically, how do we know that a solution Q′(x) and E ′(x) that we reconstruct
satisfies the property that E ′(x) divides Q′(x) and that Q′(x)

E ′(x) =
Q(x)
E(x) = P(x)?

How to check that a ratio is the same? Use “cross products” from elementary school!

We claim that Q(x)E ′(x) = Q′(x)E(x) for 1 ≤ x ≤ n+ 2k. This is a statement about evaluations of these
polynomials. Since the degree of both Q(x)E ′(x) and Q′(x)E(x) is n+ 2k− 1 and they are equal at n+ 2k
points, it follows from Property 2 of Note 7 that they are the same polynomial. Once we know that they
are the same polynomial, we can divide both sides by the polynomial E(x)E ′(x) since that polynomial is by
construction not the zero polynomial. Rearranging, we get Q′(x)

E ′(x) =
Q(x)
E(x) = P(x).

So, it all hinges on the claim that Q(x)E ′(x) = Q′(x)E(x) for all 1 ≤ x ≤ n+ 2k. Why is this claim true
for these values? Based on our method of obtaining Q′(x) and E ′(x), we know that Q′(i) = riE ′(i) and
Q(i) = riE(i). Now assume E(i) is 0. Then Q(i) is also 0, so both Q(i)E ′(i) and Q′(i)E(i) are 0 and the
claim holds. The same reasoning applies when E ′(i) is 0.

That leaves the case when both E(i) and E ′(i) are not 0. In this case, we are free to divide by it. So, we
get Q′(i)

E ′(i) = ri and also Q(i)
E(i) = ri. Since they are both equal to ri, they are equal to each other. So we get

Q′(i)
E ′(i) =

Q(i)
E(i) . Doing cross-products (multiplying both sides of the equation by E(i)E ′(i) and simplifying)

now gives us the claim. Since the claim is now proven for all cases, it holds for all 1≤ x≤ n+2k.

This means that when there are multiple solutions, they all point to the same polynomial, and hence to the
same message. As you saw from playing around with the example, this actually happens when there are
fewer errors than budgeted for.

Distance properties
So far, we have talked about the Reed-Solomon codes in a way that constantly references their polynomial-
evaluation based nature. However, it is useful to step back and ask ourselves what generic features of the
codewords enabled us to recover from erasures and general errors.

It is useful here to treat a codeword as a string/vector of some fixed length, say L characters long. To protect
a message of length n against k erasures, we saw that L≥ n+k was required. To protect a message of length
n against k general errors introduced by a malicious adversary, we saw that L ≥ n+ 2k was required. It is
a natural question to wonder whether this is merely a feature of the Reed-Solomon codes or whether it is
more fundamental.

To answer this, we define a kind of “distance” on strings of length L. We say that the Hamming distance
between strings ~s = (s1,s2, . . . ,sL) and ~r = (r1,r2, . . . ,rL) is just the count of the number of positions in

CS 70, Fall 2017, Note 9 7

which the two strings differ. In mathematical notation:

d(~s,~r) =
L

∑
i=1

1(ri 6= si) (1)

where the notation 1(ri 6= si) denotes a function that returns a 1 if the condition inside is true and 0 if it is
false.

The error and erasure correcting properties of a code are determined by the distance properties of the code-
words~c(m), Intuitively, if the codewords are too close together, then the code is more sensitive to errors and
erasures. Having codewords far apart from each other allows a code, in principle, to tolerate more erasures
and errors.

To make this precise, the Minimum Distance of a code is defined as the distance between the two closest
codewords. Let m and m̃ be two distinct messages m 6= m̃. Then the minimum distance of the code is
minm 6=m̃ d(~c(m),~c(m̃)).

If the messages themselves are the set of strings of length n, then the minimum distance of the set of
messages is just 1 because two distinct strings must differ somewhere. So clearly, when the minimum
distance is 1, there is no protection against errors or erasures.

When the minimum distance is larger than 1, then there is some protection against erasures and errors.
Suppose that the minimum distance was 2 and one position was erased in a codeword. In principle, cycling
through all the possible characters for that position would certainly yield at least 1 codeword because the
true codeword could be obtained that way. But notice that no other codeword could be obtained that way
since if one were to be obtained, it would have a Hamming distance of just 1 — and we stipulated that the
minimum distance was 2.

It is a simple exercise to generalize the above argument to show that when the minimum distance is k+ 1
or better, then the code can in principle recover from k erasure errors. If the minimum distance is k or less,
then there is clearly a codeword pair for which erasing k positions would make the pair ambiguous. The
resulting string could have come from either of these codewords. So we can’t hope for anything better.

For general errors, the situation is a little trickier. To get an intuition for what the corresponding story should
be, imagine that you are an attacker and want to confuse the decoder. You see the encoded codeword. What
are you going to do? It is intuitively clear that you will want to make the received string look like it came
from another codeword. What codeword would you choose to impersonate? Intuitively, it makes sense to
look for the closest codeword in the neighborhood. Suppose it was at a Hamming distance of d. That means
that if you were to change d positions, then you could make the received string look exactly like this other
codeword. Clearly, the decoder is pretty much guaranteed to make an error at this point.

But what if you only changed d−1 positions to partially impersonate the other codeword? At this point, the
decoder is facing a choice. It could decode to this other codeword and chalk the single-position discrepancy
up to general errors, or it could decode to the true codeword and think that d−1 positions have been changed.
What choice will it make? In general, the decoder will be perfectly confused between these two choices if
exactly d

2 errors have been made in a malicious way designed to partially impersonate this other codeword.
However, if the number of general errors are strictly less than half the minimum distance of the code, in
principle we should be able to decode the unique codeword that is less than d

2 from the received string.

The distance properties of Reed-Solomon Codes

It turns out that Reed-Solomon codes have the best-possible distance properties. (Of course, that is only a
part of their attraction. Their other attraction is that their algebraic structure gives us a very nice efficient

CS 70, Fall 2017, Note 9 8

way of decoding these codes by solving systems of linear equations instead of brute-force searching through
all nearby codewords.)

Theorem: The Reed Solomon code that takes n message characters to a codeword of size n+2k has mini-
mum distance 2k+1.

Proof: We prove this using the two claims:

Claim 1) The minimum distance is ≤ 2k+1 Claim 2) The minimum distance is ≥ 2k+1

If we show that both (1) and (2) are true, then the minimum distance must be 2k+1.

Proof of Claim (1):

We prove Claim (1) by constructing an example. If we can show there exist two codewords~ca and~cb such
that d(~ca,~cb)≤ 2k+1, then the minimum over all distances between codewords must be ≤ 2k+1.

Consider ~ma = m1m2 · · ·mn. Also consider ~mb = m1m2 · · · m̄n, where the two messages are identical in the
first n−1 positions but differ in the last position. (All strings of length n are valid messages.) So mn 6= m̄n.
The Hamming distance between these two messages is 1. We use these messages to generate polynomials
Pa(x) and Pb(x) and these are evaluated at i such that 1 ≤ i ≤ n+ 2k to generate the codewords ~ca and ~cb
of length n+2k. We use value/interpolation encoding, so Pa(i) = mi = Pb(i) for 1 ≤ i ≤ n−1. So the first
n−1 positions of~ca and~cb are identical. So they can differ in atmost n+2k− (n−1) = 2k+1 places. But
this means the Hamming distance between them is ≤ 2k+ 1. So we have constructed two codewords that
have distance at most 2k+1. Then the minimum distance between all pairs of codewords must be less than
or equal to this. Hence, the minimum distance ≤ 2k+1.

Proof of Claim (2):

Assume it were possible that the minimum distance between two distinct codewords could be ≤ 2k. We
use this to reach a contradiction. Let these two distinct codewords be ~ca and ~cb, corresponding to distinct
message polynomials Pa(x) and Pb(x). (Note: these have nothing to do with the~ca and~cb used in the Proof
for Claim (1), we are just using the same variable names.) By the construction of Reed-Solomon codes,
Pa(x) and Pb(x) have degree n−1 since the message is of size n.

Then, d(~ca,~cb) ≤ 2k. So ~ca and ~cb must be identical in ≥ n+ 2k− 2k = n positions. But ~ca and ~cb are
just the evaluations of the message polynomials Pa(x) and Pb(x) at 1 ≤ i ≤ n+ 2k. So Pa(x) and Pb(x) are
identical on at least n points. But this means they must be the same polynomial, since they are of degree
n−1! Which is a contradiction, since we assumed that~ca 6=~cb were distinct codewords. So our assumptions
must be false, and the minimum distance between two distinct codewords is ≥ 2k+1.

CS 70, Fall 2017, Note 9 9

