Note 8 Supplement: Polynomial Division Theorem

Computer Science 70 University of California, Berkeley

Summer 2018

The purpose of this note is to give a proof of the following:
Theorem 1. Let A and B be polynomials over a field, where B is not the zero polynomial. Then there exist unique polynomials Q and R such that $A=Q B+R$, where $\operatorname{deg} R<\operatorname{deg} B$.

Proof. Let $d_{1}:=\operatorname{deg} A$ and $d_{2}:=\operatorname{deg} B$. We will prove the statement by induction on the variable d_{1}. First, we dispense of a special case. If A is the zero polynomial, then we can take $Q=R=0$. Next, the base case is $d_{1}=0$. If $d_{1}=0$, then $d_{2}=0$ as well, i.e., both A and B are constants, but then we can take $Q=A / B$ and $R=0$.

So, now fix a positive integer d_{1} and suppose that whenever A^{\prime} and B^{\prime} are polynomials of degrees d_{1}^{\prime} and d_{2}^{\prime} respectively, with $d_{1}^{\prime}<d_{1}$, then there are polynomials Q^{\prime} and R^{\prime} such that $A^{\prime}=Q^{\prime} B^{\prime}+R^{\prime}$ with $\operatorname{deg} R^{\prime}<\operatorname{deg} B^{\prime}$ (notice that we are using a strong inductive hypothesis).

Case 1: $d_{1}<d_{2}$. If so, we can take $Q=0$ and $R=A$.
Case 2: $d_{1} \geq d_{2}$. We can write

$$
\begin{aligned}
& A(x)=a_{d_{1}} x^{d_{1}}+\cdots+a_{1} x+a_{0} \\
& B(x)=b_{d_{2}} x^{d_{2}}+\cdots+b_{1} x+b_{0}
\end{aligned}
$$

for coefficients $a_{0}, a_{1}, \ldots, a_{d_{1}}, b_{0}, b_{1}, \ldots, b_{d_{2}}$, where $a_{d_{1}} \neq 0$ and $b_{d_{2}} \neq 0$. Now define the polynomial $A^{\prime}(x):=A(x)-\left(a_{d_{1}} / b_{d_{2}}\right) x^{d_{1}-d_{2}} B(x)$. Notice that $\left(a_{d_{1}} / b_{d_{2}}\right) x^{d_{1}-d_{2}} B(x)$ has the same leading term as $A(x)$, so the subtraction of this term kills off the leading term of A, leaving $\operatorname{deg} A^{\prime}<\operatorname{deg} A$. By the strong
inductive hypothesis, there exist polynomials Q^{\prime} and R, with $\operatorname{deg} R<\operatorname{deg} B$, such that $A^{\prime}=Q^{\prime} B+R$. Therefore,

$$
A(x)=\underbrace{\left(\frac{a_{d_{1}}}{b_{d_{2}}} x^{d_{1}-d_{2}}+Q^{\prime}(x)\right)}_{Q(x)} B(x)+R(x)
$$

which proves the existence of the polynomials Q and R.
To prove uniqueness, suppose that $A=Q_{1} B+R_{1}=Q_{2} B+R_{2}$ for polynomials $Q_{1}, Q_{2}, R_{1}, R_{2}$, where $\operatorname{deg} R_{1}<B$ and $\operatorname{deg} R_{2}<B$. Then, we have $\left(Q_{1}-Q_{2}\right) B=R_{2}-R_{1}$. Now we compute the degree of each side. The degree of the right hand side is strictly less than $\operatorname{deg} B$, but if $Q_{1} \neq Q_{2}$, then the left hand side has degree which is at least $\operatorname{deg} B$ which is impossible. Therefore we must have $Q_{1}=Q_{2}$ and so $R_{1}=R_{2}$.

