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1 Euler’s Totient Function

1.1 Introduction

First, we establish some notation. For this note, m > 2 is a positive integer
representing the modulus. Then, Z/mZ is the set of numbers {0,1,...,m—1}
where the operations of addition and multiplication are taken modulo m. The
notation (Z/mZ)* is the set of numbers in Z/mZ which have multiplicative
inverses. We have seen then that a € (Z/mZ)* is equivalent to ged(a, m) = 1.

We define Euler’s totient function as the function ¢ : Z* — Z* (where
Z* denotes the positive integers) by (1) := 1, and for all positive integers
m > 2, o(m) := |(Z/mZ)*|. Equivalently, for positive integers m > 2, ¢(m)
is the number of elements in {0, 1,...,m — 1} which are coprime with m.

Example 1. We list the values of ¢ for the first 10 integers.
(Z/mZ)*

{1}
{1,2}
{1,3}

{1,2,3,4}
{1,5}
{1,2,3,4,5,6}
{1,3,5,7}
{1,2,4,5,7,8}
{1,3,7,9}
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Example 2. When p is prime, then (Z/pZ)* consists of all of the numbers
{1,...,p — 1} since any integer strictly between 1 and p must be coprime
with p. Thus, p(p) =p— 1.

1.2 Euler’s Theorem
Recall the following result:
Theorem 1. For a € Z/mZ, the map f : Z/mZ — Z/mZ defined by

f(z) := ax mod m is a bijection if and only if gcd(a,m) = 1.

So, if a € (Z/mZ)*, then f(z) := ax mod m is a bijection. What happens
if z € (Z/mZ)* as well? Then, both a~! and z~! exist, and a 'z~! is the
inverse of ax, so ax € (Z/mZ)* as well. This fact can be expressed as saying
that (Z/mZ)* is closed under multiplication.

Therefore, we can also think of f as a function (Z/mZ)* — (Z/mZ)*.
Since f is one-to-one when we think of it as a function Z/mZ — Z/mZ, then
it remains one-to-one when we think of it as a function (Z/mZ)* — (Z/mZ)*,
and since the domain and codomain have the same size, then we can conclude
that f is a bijection (Z/mZ)* — (Z/mZ)*.

As a consequence, the sets (Z/mZ)* and {ax : x € (Z/mZ)*} are the
same modulo m. Think of the latter set as a rearranged version of the former
set (although this is purely for intuition’s sake, since sets are not inherently
ordered). From this fact we can deduce:

Theorem 2 (Euler’s Theorem). If a € (Z/mZ)*, then a*™ =1 (mod m).

Proof. Since the sets (Z/mZ)* and {az : © € (Z/mZ)*} are the same modulo
m, then when we multiply the elements in each set, we should obtain the same
result: T[,cozpmzx @ = [locz/mzx ax (mod m). Since each z € (Z/mZ)*
has a multiplicative inverse, we can cancel out the = from both sides of the
equation to get HIG(Z/mZ)X a =1 (mod m). Finally, since there are p(m)

elements in (Z/mZ)*, we get a*™ =1 (mod m). O
In the specific case when the modulus is a prime p, we have:

Corollary 1 (Fermat’s Little Theorem). If a € (Z/pZ)* = {1,...,p — 1},
then aP~* =1 (mod p).

Euler’s Theorem can be used to speed up exponentiation in modular
arithmetic.



Example 3. Let us compute 51999 mod 12. Since ged(5,12) = 1, then
by Euler’s Theorem we have 5912 = 5% = 1 (mod 12). So, we can write
51000000 — (54Y250000 — | (10 12),

In general, if a € (Z/mZ)*, then a* = a* ™4 €M) (mod m).

1.3 A Formula for Euler’s Totient Function
The following is a consequence of the Chinese Remainder Theorem.

Theorem 3 (Chinese Remainder Theorem). If my,my > 2 are coprime
integers, then the function g : Z/miymoZ — (Z/miZ) X (Z/msZ) given by
g(x) := (x mod my, x mod my) is an isomorphism, i.e., g is a bijection and

g(x +y) = g(x) + g(y),
g(zy) = g(x)g(y)

for all z,y € Z/mymoZ, where addition and multiplication of elements in
(Z)myZ) x (Z/moZ) is defined componentwise:

(al, bl> + (CLQ, bg) = (a1 + ao mod my, b1 + bg mod mg),

(al, bl)(ag, bg) = (a1a2 mod my, ble mod mg).

Here is a consequence of the isomorphism. If z € (Z/mimyZ)*, then
r7! exists, and g(x - z7') = g(1) = (1,1). On the other hand, we also
have g(z - x71) = g(x) - g(x™1). So, g(z) - g(z™') = (1,1), which means the
first component of g(z) and the first component of g(x~!) multiply to be 1.
Therefore, the first component of g(z) has a multiplicative inverse in Z/m;Z.
Similarly, the second component of g(x) also has a multiplicative inverse in
Z/moZ. So, g(x) € (Z/miZ)* x (Z/moZ)*.

Conversely, if g(x) € (Z/miZ)* x (Z/moZ)*, then there exists a tuple
(a,b) € (Z)myZ)* x (Z/msoZ)* such that g(z)-(a,b) = (1,1) = g(1), but then
g(z - g7 (a,b)) = g(1). Since g is one-to-one, we must have z - g~ '(a,b) = 1,
ie., x € (Z/mimoZ)*.

We can now think of g as a function

(Z/mlmQZ)X — (Z/m1Z)X X (Z/mQZ)X
and the inverse function ¢! as a function

(Z)mZ)* x (Z/msZ)* — (Z/mimsZ).
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We already know that g and ¢g~! are one-to-one, so ¢ must be a bijection

(Z)mimeZ)* — (Z)myZ)* X (Z/moZ)*.
In particular, we must have

((Z/mamaZ)| = ((Z/ma ) x (Z/moZ)*| = [(Z/mZ)| - |(ZmoZ)"].

Another way to read the above equation is ¢(mims) = ¢(my)e(ms). Thus,
¢ is called a multiplicative function. (Note: For functions h : Zt — Z*,
the word multiplicative specifically means that for coprime my and ms, then
h(myms) = h(mqi)h(ms). It does not mean that h(xy) = h(z)h(y) for any
positive integers x and y.)

Now consider an integer n > 2 and let n = p{'---pp* be its prime
factorization. So, k is a positive integer, pq, ..., py are distinct prime numbers,
and o, ..., are positive integers. Then, ¢(n) = @(pi*)---e(p*). It
remains to compute ¢(p*) for p prime and a positive integer a.

Since p(p®) is the number of elements in {0,1,...,p* — 1} which are
coprime with p®, we turn to a counting argument. There are p® numbers
total in Z/p*Z, and among these, the numbers which are not coprime with p“
are 0,p,2p,...,p* —p = (p* ' — 1)p. So, there are p*~! numbers in Z/p*Z
which are not coprime with p®, which leaves p(p®) = p® —p*~! = p*~1(p—1).
Finally, we have our desired formula for ¢(n):

k

p(n) = f[p?i_l(pi -1)= nH(l — l)

i=1 pi
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