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1 Euler’s Totient Function

1.1 Introduction

First, we establish some notation. For this note, m ≥ 2 is a positive integer
representing the modulus. Then, Z/mZ is the set of numbers {0, 1, . . . ,m−1}
where the operations of addition and multiplication are taken modulo m. The
notation (Z/mZ)× is the set of numbers in Z/mZ which have multiplicative
inverses. We have seen then that a ∈ (Z/mZ)× is equivalent to gcd(a,m) = 1.

We define Euler’s totient function as the function ϕ : Z+ → Z+ (where
Z+ denotes the positive integers) by ϕ(1) := 1, and for all positive integers
m ≥ 2, ϕ(m) := |(Z/mZ)×|. Equivalently, for positive integers m ≥ 2, ϕ(m)
is the number of elements in {0, 1, . . . ,m− 1} which are coprime with m.

Example 1. We list the values of ϕ for the first 10 integers.

m (Z/mZ)× ϕ(m)
1 1
2 {1} 1
3 {1, 2} 2
4 {1, 3} 2
5 {1, 2, 3, 4} 4
6 {1, 5} 2
7 {1, 2, 3, 4, 5, 6} 6
8 {1, 3, 5, 7} 4
9 {1, 2, 4, 5, 7, 8} 6
10 {1, 3, 7, 9} 4
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Example 2. When p is prime, then (Z/pZ)× consists of all of the numbers
{1, . . . , p − 1} since any integer strictly between 1 and p must be coprime
with p. Thus, ϕ(p) = p− 1.

1.2 Euler’s Theorem

Recall the following result:

Theorem 1. For a ∈ Z/mZ, the map f : Z/mZ → Z/mZ defined by
f(x) := ax mod m is a bijection if and only if gcd(a,m) = 1.

So, if a ∈ (Z/mZ)×, then f(x) := ax mod m is a bijection. What happens
if x ∈ (Z/mZ)× as well? Then, both a−1 and x−1 exist, and a−1x−1 is the
inverse of ax, so ax ∈ (Z/mZ)× as well. This fact can be expressed as saying
that (Z/mZ)× is closed under multiplication.

Therefore, we can also think of f as a function (Z/mZ)× → (Z/mZ)×.
Since f is one-to-one when we think of it as a function Z/mZ→ Z/mZ, then
it remains one-to-one when we think of it as a function (Z/mZ)× → (Z/mZ)×,
and since the domain and codomain have the same size, then we can conclude
that f is a bijection (Z/mZ)× → (Z/mZ)×.

As a consequence, the sets (Z/mZ)× and {ax : x ∈ (Z/mZ)×} are the
same modulo m. Think of the latter set as a rearranged version of the former
set (although this is purely for intuition’s sake, since sets are not inherently
ordered). From this fact we can deduce:

Theorem 2 (Euler’s Theorem). If a ∈ (Z/mZ)×, then aϕ(m) ≡ 1 (mod m).

Proof. Since the sets (Z/mZ)× and {ax : x ∈ (Z/mZ)×} are the same modulo
m, then when we multiply the elements in each set, we should obtain the same
result:

∏
x∈(Z/mZ)× x ≡

∏
x∈(Z/mZ)× ax (mod m). Since each x ∈ (Z/mZ)×

has a multiplicative inverse, we can cancel out the x from both sides of the
equation to get

∏
x∈(Z/mZ)× a ≡ 1 (mod m). Finally, since there are ϕ(m)

elements in (Z/mZ)×, we get aϕ(m) ≡ 1 (mod m).

In the specific case when the modulus is a prime p, we have:

Corollary 1 (Fermat’s Little Theorem). If a ∈ (Z/pZ)× = {1, . . . , p − 1},
then ap−1 ≡ 1 (mod p).

Euler’s Theorem can be used to speed up exponentiation in modular
arithmetic.
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Example 3. Let us compute 51000000 mod 12. Since gcd(5, 12) = 1, then
by Euler’s Theorem we have 5ϕ(12) ≡ 54 ≡ 1 (mod 12). So, we can write
51000000 ≡ (54)250000 ≡ 1 (mod 12).

In general, if a ∈ (Z/mZ)×, then ak ≡ ak mod ϕ(m) (mod m).

1.3 A Formula for Euler’s Totient Function

The following is a consequence of the Chinese Remainder Theorem.

Theorem 3 (Chinese Remainder Theorem). If m1,m2 ≥ 2 are coprime
integers, then the function g : Z/m1m2Z → (Z/m1Z) × (Z/m2Z) given by
g(x) := (x mod m1, x mod m2) is an isomorphism, i.e., g is a bijection and

g(x+ y) = g(x) + g(y),

g(xy) = g(x)g(y)

for all x, y ∈ Z/m1m2Z, where addition and multiplication of elements in
(Z/m1Z)× (Z/m2Z) is defined componentwise:

(a1, b1) + (a2, b2) = (a1 + a2 mod m1, b1 + b2 mod m2),

(a1, b1)(a2, b2) = (a1a2 mod m1, b1b2 mod m2).

Here is a consequence of the isomorphism. If x ∈ (Z/m1m2Z)×, then
x−1 exists, and g(x · x−1) = g(1) = (1, 1). On the other hand, we also
have g(x · x−1) = g(x) · g(x−1). So, g(x) · g(x−1) = (1, 1), which means the
first component of g(x) and the first component of g(x−1) multiply to be 1.
Therefore, the first component of g(x) has a multiplicative inverse in Z/m1Z.
Similarly, the second component of g(x) also has a multiplicative inverse in
Z/m2Z. So, g(x) ∈ (Z/m1Z)× × (Z/m2Z)×.

Conversely, if g(x) ∈ (Z/m1Z)× × (Z/m2Z)×, then there exists a tuple
(a, b) ∈ (Z/m1Z)××(Z/m2Z)× such that g(x) ·(a, b) = (1, 1) = g(1), but then
g(x · g−1(a, b)) = g(1). Since g is one-to-one, we must have x · g−1(a, b) = 1,
i.e., x ∈ (Z/m1m2Z)×.

We can now think of g as a function

(Z/m1m2Z)× → (Z/m1Z)× × (Z/m2Z)×

and the inverse function g−1 as a function

(Z/m1Z)× × (Z/m2Z)× → (Z/m1m2Z)×.
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We already know that g and g−1 are one-to-one, so g must be a bijection
(Z/m1m2Z)× → (Z/m1Z)× × (Z/m2Z)×.

In particular, we must have

|(Z/m1m2Z)×| = |(Z/m1Z)× × (Z/m2Z)×| = |(Z/m1Z)×| · |(Z/m2Z)×|.

Another way to read the above equation is ϕ(m1m2) = ϕ(m1)ϕ(m2). Thus,
ϕ is called a multiplicative function. (Note: For functions h : Z+ → Z+,
the word multiplicative specifically means that for coprime m1 and m2, then
h(m1m2) = h(m1)h(m2). It does not mean that h(xy) = h(x)h(y) for any
positive integers x and y.)

Now consider an integer n ≥ 2 and let n = pα1
1 · · · p

αk
k be its prime

factorization. So, k is a positive integer, p1, . . . , pk are distinct prime numbers,
and α1, . . . , αk are positive integers. Then, ϕ(n) = ϕ(pα1

1 ) · · ·ϕ(pαk
k ). It

remains to compute ϕ(pα) for p prime and a positive integer α.
Since ϕ(pα) is the number of elements in {0, 1, . . . , pα − 1} which are

coprime with pα, we turn to a counting argument. There are pα numbers
total in Z/pαZ, and among these, the numbers which are not coprime with pα

are 0, p, 2p, . . . , pα − p = (pα−1 − 1)p. So, there are pα−1 numbers in Z/pαZ
which are not coprime with pα, which leaves ϕ(pα) = pα− pα−1 = pα−1(p− 1).
Finally, we have our desired formula for ϕ(n):

ϕ(n) =
k∏
i=1

pαi−1
i (pi − 1) = n

k∏
i=1

(
1− 1

pi

)
.
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