Note 7 Supplement: Euler's Totient Function

Computer Science 70
University of California, Berkeley

Summer 2018

1 Euler's Totient Function

1.1 Introduction

First, we establish some notation. For this note, $m \geq 2$ is a positive integer representing the modulus. Then, $\mathbb{Z} / m \mathbb{Z}$ is the set of numbers $\{0,1, \ldots, m-1\}$ where the operations of addition and multiplication are taken modulo m. The notation $(\mathbb{Z} / m \mathbb{Z})^{\times}$is the set of numbers in $\mathbb{Z} / m \mathbb{Z}$ which have multiplicative inverses. We have seen then that $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$is equivalent to $\operatorname{gcd}(a, m)=1$.

We define Euler's totient function as the function $\varphi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$(where \mathbb{Z}^{+}denotes the positive integers) by $\varphi(1):=1$, and for all positive integers $m \geq 2, \varphi(m):=\left|(\mathbb{Z} / m \mathbb{Z})^{\times}\right|$. Equivalently, for positive integers $m \geq 2, \varphi(m)$ is the number of elements in $\{0,1, \ldots, m-1\}$ which are coprime with m.

Example 1. We list the values of φ for the first 10 integers.

m	$(\mathbb{Z} / m \mathbb{Z})^{\times}$	$\varphi(m)$
1		1
2	$\{1\}$	1
3	$\{1,2\}$	2
4	$\{1,3\}$	2
5	$\{1,2,3,4\}$	4
6	$\{1,5\}$	2
7	$\{1,2,3,4,5,6\}$	6
8	$\{1,3,5,7\}$	4
9	$\{1,2,4,5,7,8\}$	6
10	$\{1,3,7,9\}$	4

Example 2. When p is prime, then $(\mathbb{Z} / p \mathbb{Z})^{\times}$consists of all of the numbers $\{1, \ldots, p-1\}$ since any integer strictly between 1 and p must be coprime with p. Thus, $\varphi(p)=p-1$.

1.2 Euler's Theorem

Recall the following result:
Theorem 1. For $a \in \mathbb{Z} / m \mathbb{Z}$, the map $f: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ defined by $f(x):=a x \bmod m$ is a bijection if and only if $\operatorname{gcd}(a, m)=1$.

So, if $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$, then $f(x):=a x \bmod m$ is a bijection. What happens if $x \in(\mathbb{Z} / m \mathbb{Z})^{\times}$as well? Then, both a^{-1} and x^{-1} exist, and $a^{-1} x^{-1}$ is the inverse of $a x$, so $a x \in(\mathbb{Z} / m \mathbb{Z})^{\times}$as well. This fact can be expressed as saying that $(\mathbb{Z} / m \mathbb{Z})^{\times}$is closed under multiplication.

Therefore, we can also think of f as a function $(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / m \mathbb{Z})^{\times}$. Since f is one-to-one when we think of it as a function $\mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$, then it remains one-to-one when we think of it as a function $(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / m \mathbb{Z})^{\times}$, and since the domain and codomain have the same size, then we can conclude that f is a bijection $(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / m \mathbb{Z})^{\times}$.

As a consequence, the sets $(\mathbb{Z} / m \mathbb{Z})^{\times}$and $\left\{a x: x \in(\mathbb{Z} / m \mathbb{Z})^{\times}\right\}$are the same modulo m. Think of the latter set as a rearranged version of the former set (although this is purely for intuition's sake, since sets are not inherently ordered). From this fact we can deduce:

Theorem 2 (Euler's Theorem). If $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$, then $a^{\varphi(m)} \equiv 1(\bmod m)$.
Proof. Since the sets $(\mathbb{Z} / m \mathbb{Z})^{\times}$and $\left\{a x: x \in(\mathbb{Z} / m \mathbb{Z})^{\times}\right\}$are the same modulo m, then when we multiply the elements in each set, we should obtain the same result: $\prod_{x \in(\mathbb{Z} / m \mathbb{Z}) \times} x \equiv \prod_{x \in(\mathbb{Z} / m \mathbb{Z})^{\times}} a x(\bmod m)$. Since each $x \in(\mathbb{Z} / m \mathbb{Z})^{\times}$ has a multiplicative inverse, we can cancel out the x from both sides of the equation to get $\prod_{x \in(\mathbb{Z} / m \mathbb{Z})^{\times}} a \equiv 1(\bmod m)$. Finally, since there are $\varphi(m)$ elements in $(\mathbb{Z} / m \mathbb{Z})^{\times}$, we get $a^{\varphi(m)} \equiv 1(\bmod m)$.

In the specific case when the modulus is a prime p, we have:
Corollary 1 (Fermat's Little Theorem). If $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}=\{1, \ldots, p-1\}$, then $a^{p-1} \equiv 1(\bmod p)$.

Euler's Theorem can be used to speed up exponentiation in modular arithmetic.

Example 3. Let us compute $5^{1000000} \bmod 12$. Since $\operatorname{gcd}(5,12)=1$, then by Euler's Theorem we have $5^{\varphi(12)} \equiv 5^{4} \equiv 1(\bmod 12)$. So, we can write $5^{1000000} \equiv\left(5^{4}\right)^{250000} \equiv 1(\bmod 12)$.

In general, if $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$, then $a^{k} \equiv a^{k \bmod \varphi(m)}(\bmod m)$.

1.3 A Formula for Euler's Totient Function

The following is a consequence of the Chinese Remainder Theorem.
Theorem 3 (Chinese Remainder Theorem). If $m_{1}, m_{2} \geq 2$ are coprime integers, then the function $g: \mathbb{Z} / m_{1} m_{2} \mathbb{Z} \rightarrow\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$ given by $g(x):=\left(x \bmod m_{1}, x \bmod m_{2}\right)$ is an isomorphism, i.e., g is a bijection and

$$
\begin{aligned}
g(x+y) & =g(x)+g(y), \\
g(x y) & =g(x) g(y)
\end{aligned}
$$

for all $x, y \in \mathbb{Z} / m_{1} m_{2} \mathbb{Z}$, where addition and multiplication of elements in $\left(\mathbb{Z} / m_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)$ is defined componentwise:

$$
\begin{aligned}
\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right) & =\left(a_{1}+a_{2} \bmod m_{1}, b_{1}+b_{2} \bmod m_{2}\right), \\
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) & =\left(a_{1} a_{2} \bmod m_{1}, b_{1} b_{2} \bmod m_{2}\right) .
\end{aligned}
$$

Here is a consequence of the isomorphism. If $x \in\left(\mathbb{Z} / m_{1} m_{2} \mathbb{Z}\right)^{\times}$, then x^{-1} exists, and $g\left(x \cdot x^{-1}\right)=g(1)=(1,1)$. On the other hand, we also have $g\left(x \cdot x^{-1}\right)=g(x) \cdot g\left(x^{-1}\right)$. So, $g(x) \cdot g\left(x^{-1}\right)=(1,1)$, which means the first component of $g(x)$ and the first component of $g\left(x^{-1}\right)$ multiply to be 1 . Therefore, the first component of $g(x)$ has a multiplicative inverse in $\mathbb{Z} / m_{1} \mathbb{Z}$. Similarly, the second component of $g(x)$ also has a multiplicative inverse in $\mathbb{Z} / m_{2} \mathbb{Z}$. So, $g(x) \in\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times}$.

Conversely, if $g(x) \in\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times}$, then there exists a tuple $(a, b) \in\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times}$such that $g(x) \cdot(a, b)=(1,1)=g(1)$, but then $g\left(x \cdot g^{-1}(a, b)\right)=g(1)$. Since g is one-to-one, we must have $x \cdot g^{-1}(a, b)=1$, i.e., $x \in\left(\mathbb{Z} / m_{1} m_{2} \mathbb{Z}\right)^{\times}$.

We can now think of g as a function

$$
\left(\mathbb{Z} / m_{1} m_{2} \mathbb{Z}\right)^{\times} \rightarrow\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times}
$$

and the inverse function g^{-1} as a function

$$
\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times} \rightarrow\left(\mathbb{Z} / m_{1} m_{2} \mathbb{Z}\right)^{\times}
$$

We already know that g and g^{-1} are one-to-one, so g must be a bijection $\left(\mathbb{Z} / m_{1} m_{2} \mathbb{Z}\right)^{\times} \rightarrow\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times}$.

In particular, we must have

$$
\left|\left(\mathbb{Z} / m_{1} m_{2} \mathbb{Z}\right)^{\times}\right|=\left|\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times} \times\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times}\right|=\left|\left(\mathbb{Z} / m_{1} \mathbb{Z}\right)^{\times}\right| \cdot\left|\left(\mathbb{Z} / m_{2} \mathbb{Z}\right)^{\times}\right|
$$

Another way to read the above equation is $\varphi\left(m_{1} m_{2}\right)=\varphi\left(m_{1}\right) \varphi\left(m_{2}\right)$. Thus, φ is called a multiplicative function. (Note: For functions $h: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$, the word multiplicative specifically means that for coprime m_{1} and m_{2}, then $h\left(m_{1} m_{2}\right)=h\left(m_{1}\right) h\left(m_{2}\right)$. It does not mean that $h(x y)=h(x) h(y)$ for any positive integers x and y.)

Now consider an integer $n \geq 2$ and let $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ be its prime factorization. So, k is a positive integer, p_{1}, \ldots, p_{k} are distinct prime numbers, and $\alpha_{1}, \ldots, \alpha_{k}$ are positive integers. Then, $\varphi(n)=\varphi\left(p_{1}^{\alpha_{1}}\right) \cdots \varphi\left(p_{k}^{\alpha_{k}}\right)$. It remains to compute $\varphi\left(p^{\alpha}\right)$ for p prime and a positive integer α.

Since $\varphi\left(p^{\alpha}\right)$ is the number of elements in $\left\{0,1, \ldots, p^{\alpha}-1\right\}$ which are coprime with p^{α}, we turn to a counting argument. There are p^{α} numbers total in $\mathbb{Z} / p^{\alpha} \mathbb{Z}$, and among these, the numbers which are not coprime with p^{α} are $0, p, 2 p, \ldots, p^{\alpha}-p=\left(p^{\alpha-1}-1\right) p$. So, there are $p^{\alpha-1}$ numbers in $\mathbb{Z} / p^{\alpha} \mathbb{Z}$ which are not coprime with p^{α}, which leaves $\varphi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}=p^{\alpha-1}(p-1)$. Finally, we have our desired formula for $\varphi(n)$:

$$
\varphi(n)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)=n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) .
$$

