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Prime numbers play a central role in the study of modular arithmetic.
In particular, the finite field with p elements (denoted GF(p)), where p is a
prime, enjoys several nice properties:

1. Every non-zero element has a multiplicative inverse.

2. Fermat’s Little Theorem: For non-zero a ∈ GF(p), ap−1 ≡ 1 (mod p).
In particular, Fermat’s Little Theorem is the basis for the correctness
of the RSA public-key cryptosystem.

The properties above do not hold modulo m, when the positive integer m is
not prime. 1 Therefore, it is of interest to develop a systematic method for
reducing problems modulo m to problems modulo p, where p is prime.

Here is the systematic method we seek.

Theorem 1 (Chinese Remainder Theorem). Let n be a positive integer and
y1, . . . , yn be given integers. For integers m1, . . . ,mn > 1 which are pairwise
coprime, the system of linear congruences

x ≡ y1 (mod m1),

...

x ≡ yn (mod mn),

1Fermat’s Little Theorem, when suitably generalized with Euler’s totient function, does
have an analog modulo m.
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has a unique solution x ∈ Z/m1 · · ·mnZ, and moreover, the solution can be
explicitly computed.

See Note 6 for the proof of the theorem. The construction of the solution
given in the proof is also interesting in its own right, and is very related to
polynomial interpolation which we will see later in the course.

Example 1. Let p and q be primes, and let m := pq. Consider the equation
x2 ≡ −1 (mod m), that is, we are interested in finding the square roots of −1
modulo m. Note that if x2 ≡ −1 (mod m), then m | x2 + 1, and so p | x2 + 1.
Likewise, q | x2 + 1. Thus, x2 + 1 must satisfy the following system of linear
congruences:

x2 + 1 ≡ 0 (mod p) (1)

x2 + 1 ≡ 0 (mod q) (2)

The CRT tells us that the solutions to x2 ≡ −1 (mod m) are precisely the x
which solve the system of linear congruences

x ≡ y1 (mod p)

x ≡ y2 (mod q)

where y1 is a solution to (1) and y2 is a solution to (2). Thus we see that a
question posed modulo m is equivalent to first solving the equations (1) and
(2) (which is done modulo primes), and then using the CRT to combine the
solutions of (1) and (2) into solutions to the original question modulo m.

Remark: Example 1 is slightly misleading. In order to fully reduce a
question modulo m into a question over the finite field GF(p), one needs more
tools than the CRT alone. In general, one prime factorizes m = pα1

1 · · · pαn
n

for primes p1, . . . , pn and positive integer powers α1, . . . , αn. Then, solving
an equation modulo m is equivalent to first solving the equation modulo a
prime power pα. The technique of transferring solutions modulo p to solutions
modulo pα is known as “lifting” and will not be discussed further here.

We now give a deeper understanding of the CRT. Let m1,m2 > 1 be
coprime integers, and consider the system of equations

x ≡ a (mod m1) (3)

x ≡ b (mod m2) (4)
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where now we think of varying (a, b) in (Z/m1Z) × (Z/m2Z). Given any
choice of (a, b), we can apply the CRT to find the unique solution x modulo
m1m2. In fact, we can define a function

g : Z/m1m2Z→ (Z/m1Z)× (Z/m2Z)

given by g(x) := (x mod m1, x mod m2).

The CRT tells us that g is one-to-one and onto, that is, g is a bijection. The
inverse function is

g−1 : (Z/m1Z)× (Z/m2Z)→ Z/m1m2Z

given by g−1(a, b) := x, where x is the unique solution to (3) and (4).

In fact, f is an isomorphism, a term from algebra which means that the two
structures Z/m1m2Z and (Z/m1Z)× (Z/m2Z) are essentially the same with
respect to addition and multiplication. We already have an understanding
of how to add and multiply elements in Z/m1m2Z, namely, we add and
multiply them modulo m1m2. To pursue this idea further, we must define the
operations of addition and multiplication on the set (Z/m1Z)× (Z/m2Z).

Let (a1, b1), (a2, b2) be two elements of (Z/m1Z)× (Z/m2Z). We define
addition and multiplication componentwise:

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2),

(a1, b1)(a2, b2) = (a1a2, b1b2).

The special property of the function g defined above is that it preserves the
operations of addition and multiplication, that is:

g(x+ y) = g(x) + g(y), (5)

g(xy) = g(x)g(y), (6)

for all x, y ∈ Z/m1m2Z. Notice that on the left, the expression x+ y is the
operation of addition in the set Z/m1m2Z, while on the right, the expression
g(x) + g(y) is the operation of addition in the set (Z/m1Z)× (Z/m2Z).

To understand the meaning of the statements above, notice that x + y
is the addition of two elements in Z/m1m2Z, and then when we “convert”
to (Z/m1Z) × (Z/m2Z) via the bijection g, then we get g(x + y). On the
other hand, if we convert x and y to (Z/m1Z) × (Z/m2Z) individually, we
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get g(x) and g(y) respectively, and then if we add g(x) and g(y) as tuples
in (Z/m1Z)× (Z/m2Z), we get g(x) + g(y). So, g(x+ y) = g(x) + g(y) says
that it does not matter whether we perform the addition in Z/m1m2Z, or in
(Z/m1Z)× (Z/m2Z), because the result is the same in either case. Similarly,
it does not matter in which structure we perform multiplication.

To understand why g is an isomorphism, note that for all x, y ∈ Z/m1m2Z,

g(x+ y) = (x+ y mod m1, x+ y mod m2)

= (x mod m1, x mod m2) + (y mod m1, y mod m2)

= g(x) + g(y),

g(xy) = (xy mod m1, xy mod m2)

= (x mod m1, x mod m2)(y mod m1, y mod m2)

= g(x)g(y).

The isomorphism is denoted by Z/m1m2Z ∼= (Z/m1Z)× (Z/m2Z).
To give a concrete example, we will now build a table for the isomorphism

between Z/45Z and (Z/5Z)× (Z/9Z).

0 1 2 3 4 5 6 7 8
0 0 10 20 30 40 5 15 25 35
1 36 1 11 21 31 41 6 16 26
2 27 37 2 12 22 32 42 7 17
3 18 28 38 3 13 23 33 43 8
4 9 19 29 39 4 14 24 34 44

Additional insights can be gleaned from the table.

• The table can be constructed by writing 0 in the upper left corner,
and then writing successive numbers diagonally to the right, wrapping
around the rows and columns on the table when necessary.

• The bolded numbers are the numbers which are relatively prime to 45.
Note that the bolded numbers appear precisely in the rows which are
relatively prime to 5 and the columns which are relatively prime to 9.
This is the statement that if g(x) = (a, b), then x has an inverse modulo
m1m2 if and only if a has an inverse modulo m1 and b has an inverse
modulo m2.
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The structures Z/m1m2Z (with addition and multiplication taken modulo
m1m2) and (Z/m1Z)× (Z/m2Z) (with the operations of addition and mul-
tiplication defined above) are examples of structures called rings. A simple
way to describe a ring is a structure on which you can perform addition and
multiplication. In this language, g is known as a ring isomorphism. The
existence of a ring isomorphism means that any fact about the structure
Z/m1m2Z which is phrased solely in terms of addition and multiplication
(e.g., x has a multiplicative inverse in Z/m1m2Z) can be transferred over to a
corresponding fact in (Z/m1Z)× (Z/m2Z) (e.g., g(x) has a multiplicative in-
verse in (Z/m1Z)× (Z/m2Z)). If you are interested in learning more, consider
taking Mathematics 113.

Finally, we restate the CRT with the more nuanced view:

Theorem 2 (Chinese Remainder Theorem). Let n be a positive integer and
m1, . . . ,mn > 1 be coprime integers. Then,

Z/m1 · · ·mnZ ∼= (Z/m1Z)× · · · × (Z/mnZ).

In other words, there exists a function

g : Z/m1 · · ·mnZ→ (Z/m1Z)× · · · × (Z/mnZ)

such that g is a bijection and for all x, y ∈ Z/m1 · · ·mnZ,

g(x+ y) = g(x) + g(y),

g(xy) = g(x)g(y).

The isomorphism is explicitly given by g(x) := (x mod m1, . . . , x mod mn).
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