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Variance
We have seen in the previous note that if we toss a coin n times with bias p, then the expected number of
heads is np. What this means is that if we repeat the experiment multiple times, where in each experiment
we toss the coin n times, then on average we get np heads. But in any single experiment, the number of
heads observed can be any value between 0 and n. What can we say about how far off we are from the
expected value? That is, what is the typical deviation of the number of heads from np?

Random Walk

Let us consider a simpler setting that is equivalent to tossing a fair coin n times, but is more amenable to
analysis. Suppose we have a particle that starts at position 0 and performs a random walk. At each time step,
the particle moves either one step to the right or one step to the left with equal probability, and the move at
each time step is independent of all other moves. We think of these random moves as taking place according
to whether a fair coin comes up heads or tails. The expected position of the particle after n moves is back at
0, but how far from 0 should we typically expect the particle to end up at?

Denoting a right-move by +1 and a left-move by −1, we can describe the probability space here as the set
of all sequences of length n over the alphabet {±1}, each having equal probability 1

2n . Let the r.v. X denote
the position of the particle (relative to our starting point 0) after n moves. Thus, we can write

X = X1 +X2 + · · ·+Xn, (1)

where Xi =+1 if the i-th move is to the right and Xi =−1 otherwise.

Now obviously we have E(X) = 0. The easiest way to see this is to note that E(Xi) = (1
2×1)+(1

2×(−1)) =
0, so by linearity of expectation E(X) = ∑

n
i=1 E(Xi) = 0. But of course this is not very informative, and is

due to the fact that positive and negative deviations from 0 cancel out.

What we are really asking is: What is the expected value of |X |, the distance of the particle from 0? Rather
than consider the r.v. |X |, which is a little difficult to work with due to the absolute value operator, we will
instead look at the r.v. X2. Notice that this also has the effect of making all deviations from 0 positive, so
it should also give a good measure of the distance from 0. However, because it is the squared distance, we
will need to take a square root at the end.

We will now show that the expected square distance after n steps is equal to n:

Claim 17.1. For the random variable X defined in (1), we have E(X2) = n.

Proof. We use the expression (1) and expand the square:

E(X2) = E((X1 +X2 + · · ·+Xn)
2)

= E(∑n
i=1 X2

i +∑i6= j XiX j)

= ∑
n
i=1 E(X2

i )+∑i 6= j E(XiX j)
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In the last line we have used linearity of expectation. To proceed, we need to compute E(X2
i ) and E(XiX j)

(for i 6= j). Let’s consider first X2
i . Since Xi can take on only values±1, clearly X2

i = 1 always, so E(X2
i ) = 1.

What about E(XiX j)? Well, XiX j = +1 when Xi = X j = +1 or Xi = X j = −1, and otherwise XiX j = −1.
Therefore,

P[XiX j = 1] = P[(Xi = X j =+1)∨ (Xi = X j =−1)]

= P[Xi = X j =+1] + P[Xi = X j =−1]

= P[Xi =+1]×P[X j =+1] + P[Xi =−1]×P[X j =−1]

= 1
4 +

1
4 = 1

2 ,

where in the above calculation we used the fact that the events Xi = +1 and X j = +1 are independent, and
similarly the events Xi = −1 and X j = −1 are independent. Thus P[XiX j = −1] = 1

2 as well, and hence
E(XiX j) = 0.

Plugging these values into the above equation gives

E(X2) =
n

∑
i=1

1+∑
i6= j

0 = n,

as claimed.

So we see that our expected squared distance from 0 is n. One interpretation of this is that we might expect
to be a distance of about

√
n away from 0 after n steps. However, we have to be careful here: we cannot

simply argue that E(|X |) =
√

E(X2) =
√

n. (Why not?) We will see later in the lecture how to make precise
deductions about |X | from knowledge of E(X2).

For the moment, however, let’s agree to view E(X2) as an intuitive measure of “spread” of the r.v. X . In
fact, for a more general r.v. with expectation E(X) = µ , what we are really interested in is E((X −µ)2), the
expected squared distance from the mean. In our random walk example, we had µ = 0, so E((X −µ)2) just
reduces to E(X2).

Definition 17.1 (Variance). For a r.v. X with expectation E(X) = µ , the variance of X is defined to be

Var(X) = E((X−µ)2).

The square root σ(X) :=
√

Var(X) is called the standard deviation of X.

The point of the standard deviation is merely to “undo” the squaring in the variance. Thus the standard
deviation is “on the same scale as” the r.v. itself. Since the variance and standard deviation differ just by a
square, it really doesn’t matter which one we choose to work with as we can always compute one from the
other immediately. We shall usually use the variance. For the random walk example above, we have that
Var(X) = n, and the standard deviation of X , σ(X), is

√
n.

The following easy observation gives us a slightly different way to compute the variance that is simpler in
many cases.

Theorem 17.1. For a r.v. X with expectation E(X) = µ , we have Var(X) = E(X2)−µ2.

Proof. From the definition of variance, we have

Var(X) = E((X−µ)2) = E(X2−2µX +µ
2) = E(X2)−2µE(X)+µ

2 = E(X2)−µ
2.

In the third step above, we used linearity of expectation. Moreover, note that µ = E(X) is a constant, so
E(µX) = µE(X) = µ2 and E(µ2) = µ2.
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Another important property that will come in handy is the following: For any random variable X and con-
stant c, we have

Var(cX) = c2Var(X).

The proof is simple and left as an exercise.

Examples
Let’s see some examples of variance calculations.

1. Fair die. Let X be the score on the roll of a single fair die. Recall from the previous note that
E(X) = 7

2 . So we just need to compute E(X2), which is a routine calculation:

E(X2) =
1
6
(
12 +22 +32 +42 +52 +62)= 91

6
.

Thus from Theorem 17.1,

Var(X) = E(X2)− (E(X))2 =
91
6
− 49

4
=

35
12

.

2. Uniform distribution. More generally, if X is a uniform random variable on the set {1, . . . ,n}, so X
takes on values 1, . . . ,n with equal probability 1

n , then the mean, variance and standard deviation of X
are given by:

E(X) =
n+1

2
, Var(X) =

n2−1
12

, σ(X) =

√
n2−1

12
. (2)

You should verify these as an exercise.

3. Number of fixed points. Let X be the number of fixed points in a random permutation of n items (i.e.,
the number of students in a class of size n who receive their own homework after shuffling). We saw
in the previous note that E(X) = 1, regardless of n. To compute E(X2), write X = X1 +X2 + · · ·+Xn,
where Xi = 1 if i is a fixed point, and Xi = 0 otherwise. Then as usual we have

E(X2) =
n

∑
i=1

E(X2
i )+∑

i 6= j
E(XiX j). (3)

Since Xi is an indicator r.v., we have that E(X2
i ) = P[Xi = 1] = 1

n . Since both Xi and X j are indicators,
we can compute E(XiX j) as follows:

E(XiX j) = P[XiX j = 1] = P[Xi = 1∧X j = 1] = P[both i and j are fixed points] =
1

n(n−1)
.

Make sure that you understand the last step here. Plugging this into equation (3) we get

E(X2) =
n

∑
i=1

1
n
+∑

i6= j

1
n(n−1)

= (n× 1
n)+(n(n−1)× 1

n(n−1)) = 1+1 = 2.

Thus Var(X) = E(X2)− (E(X))2 = 2−1 = 1. That is, the variance and the mean are both equal to 1.
Like the mean, the variance is also independent of n. Intuitively at least, this means that it is unlikely
that there will be more than a small number of fixed points even when the number of items, n, is very
large.
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Multiple Random Variables
Often one is interested in multiple random variables on the same sample space. Consider, for example,
the sample space of flipping two coins. One could define many random variables: for example a random
variable X indicating the number of heads in the sequence, or a random variable Y indicating the number of
tails in a sequence of coin tosses, or a random variable Z indicating whether the first is heads or not. Note,
that for each sample point, any random variable has a specific value: for HT , X = 1, Y = 1, and Z = 1.

The concept of a distribution can then be extended to probabilities for the combination of values for multiple
random variables.

Definition 17.2. The joint distribution for two discrete random variables X and Y is the collection of values
{((a,b),P[X = a,Y = b]) : a ∈A b ∈B}, where A is the set of all possible values taken by X and B is the
set of all possible values taken by Y .

When given a joint distribution for X and Y , the distribution for X , Pr[X = a] is called the marginal distri-
bution for X , and can be found by “summing out” over the values of Y . That is,

Pr[X = a] = ∑
b∈B

Pr[X = a,Y = b].

The marginal distribution for Y is analagous, as is the notion of a joint distribution for any number of random
variables.

A joint distribution over random variables X1, . . . ,Xn (for example, Xi could be the value of the ith roll of a
sequence of n die rolls) is Pr[X1 = x1, . . . ,Xn = xn] where xi ∈ Si and Si is the set of possible values for Xi.
The marginal distribution for Xi is simply the distribution for Xi and can be obtained by summing over all
the possible values of the other variables, but in some cases can be derived more simply. We proceed to one
such case.

Independence of Random Variables
Independence for random variables is defined in an analogous fashion to independence for events:

Definition 17.3 (Independent r.v.’s). Random variables X and Y on the same probability space are said to
be independent if the events X = a and Y = b are independent for all values a,b. Equivalently, the joint
distribution of independent r.v.’s decomposes as

P[X = a,Y = b] = P[X = a]P[Y = b] ∀a,b.

Mutual independence of more than two r.v.’s is defined similarly. A very important example of independent
r.v.’s is indicator r.v.’s for independent events. Thus, for example, if {Xi} are indicator r.v.’s for the i-th toss
of a coin being Heads, then the Xi are mutually independent r.v.’s.

This example motivates the commonly used phrase "independent and identically distributed i.i.d. set of
random variables". In this example, the set of variables {Xi} is a set of i.i.d. indicator random variables for
a coin being Heads on each toss.

One of the most important and useful facts about variance is if a random variable X is the sum of independent
random variables X = X1 + · · ·+Xn, then its variance is the sum of the variances of the individual r.v.’s. In
particular, if the individual r.v.’s Xi are identically distributed (i.e., they have the same distribution), then
Var(X) = ∑i Var(Xi) = n ·Var(X1). This means that the standard deviation is σ(X) =

√
n ·σ(X1). Note that
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by contrast, the expected value is E[X ] = n ·E[X1]. Intuitively this means that whereas the average value
of X grows proportionally to n, the spread of the distribution grows proportionally to

√
n, which is much

smaller than n. In other words the distribution of X tends to concentrate around its mean.

Let us now formalize these ideas. First, we have the following result which states that the expected value of
the product of two independent random variables is equal to the product of their expected values.

Theorem 17.2. For independent random variables X ,Y , we have E(XY ) = E(X)E(Y ).

Proof. We have

E(XY ) = ∑
a

∑
b

ab×P[X = a,Y = b]

= ∑
a

∑
b

ab×P[X = a]×P[Y = b]

=

(
∑
a

a×P[X = a]
)
×

(
∑
b

b×P[Y = b]

)
= E(X)×E(Y ),

as required. In the second line here we made crucial use of independence.

We now use the above theorem to conclude the nice property that the variance of the sum of independent
random variables is equal to the sum of their variances.

Theorem 17.3. For independent random variables X ,Y , we have

Var(X +Y ) = Var(X)+Var(Y ).

Proof. From the alternative formula for variance in Theorem 17.1, we have, using linearity of expectation
extensively,

Var(X +Y ) = E((X +Y )2)−E(X +Y )2

= E(X2)+E(Y 2)+2E(XY )− (E(X)+E(Y ))2

= (E(X2)−E(X)2)+(E(Y 2)−E(Y )2)+2(E(XY )−E(X)E(Y ))

= Var(X)+Var(Y )+2(E(XY )−E(X)E(Y )).

Now because X ,Y are independent, by Theorem 17.2 the final term in this expression is zero. Hence we get
our result.

Note: The expression E(XY )−E(X)E(Y ) appearing in the above proof is called the covariance of X and Y ,
and is a measure of the dependence between X ,Y . It is zero when X ,Y are independent.

It is very important to remember that neither of these two results is true in general, without the assumption
that X ,Y are independent. As a simple example, note that even for a 0-1 r.v. X with P[X = 1] = p, E(X2) = p
is not equal to E(X)2 = p2 (because of course X and X are not independent!). This is in contrast to the case
of the expectation, where we saw that the expectation of a sum of r.v.’s is the sum of the expectations of the
individual r.v.’s always.
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Example
Let’s return to our motivating example of a sequence of n coin tosses. Let X the the number of Heads in n
tosses of a biased coin with Heads probability p (i.e., X has the binomial distribution with parameters n, p).
As usual, we write X = X1 +X2 + · · ·+Xn, where Xi = 1 if the i-th toss is Head, and Xi = 0 otherwise.

We already know E(X) =∑
n
i=1 E(Xi) = np. We can compute Var(Xi) =E(X2

i )−E(Xi)
2 = p− p2 = p(1− p).

Since the Xi’s are independent, by Theorem 17.3 we get Var(X) = ∑
n
i=1 Var(Xi) = np(1− p).

As an example, for a fair coin (p = 1
2 ) the expected number of Heads in n tosses is n

2 , and the standard
deviation is

√n
4 =

√
n

2 . Note that since the maximum number of Heads is n, the standard deviation is much
less than this maximum number for large n. This is in contrast to the previous example of the uniformly

distributed random variable (2), where the standard deviation σ(X) =
√

n2−1
12 ≈ n√

12
is of the same order

as the largest value n. In this sense, the spread of a binomially distributed r.v. is much smaller than that of a
uniformly distributed r.v.
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