
CS 70 Discrete Mathematics and Probability Theory
Spring 2017 Course Notes Note 13

Introduction to Discrete Probability
In the last note we considered the probabilistic experiment where we flipped a fair coin 10,000 times and
counted the number of Hs. We asked "what is the chance that we get between 4900 and 5100 Hs". One
of the lessons was that the remarkable concentration of the fraction of Hs had something to do with the
astronomically large number of possible outcomes of 10,000 coin flips.

In this note we will formalize all these notions for an arbitrary probabilistic experiment. We will start by
introducing the space of all possible outcomes of the experiment, called a sample space. Each element
of the sample space is assigned a probability - which tells us how likely it is to occur when we actually
perform the experiment. The mathematical formalism we introduce might take you some time to get used
to. But you should remember that ultimately it is just a precise way to say what we mean when we describe
a probabilistic experiment like flipping a coin n times.

Random Experiments
In general, a probabilistic experiment consists of drawing a sample of k elements from a set S of cardinality
n. The possible outcomes of such an experiment are exactly the objects that we counted in the last note.
Recall from the last note that we considered four possible scenarios for counting, depending upon whether
we sampled with or without replacement, and whether the order in which the k elements are chosen does or
does not matter. The same will be the case for our probabilistic experiments. The outcome of the random
experiment is called a sample point. The sample space, often denoted by Ω, is the set of all possible
outcomes.

An example of such an experiment is tossing a coin 4 times. In this case, S = {H,T} and we are drawing 4
elements with replacement. HT HT is an example of a sample point and the sample space has 16 elements:

How do we determine the chance of each particular outcome, such as HHT H, of our experiment? In order
to do this, we need to define the probability for each sample point, as we will do below.
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Probability Spaces
A probability space is a sample space Ω, together with a probability Pr[ω] for each sample point ω , such
that

• 0≤ Pr[ω]≤ 1 for all ω ∈Ω.

• ∑
ω∈Ω

Pr[ω] = 1, i.e., the sum of the probabilities of all outcomes is 1.

The easiest way to assign probabilities to sample points is uniformly: if |Ω| = N, then Pr[x] = 1
N ∀x ∈ Ω.

For example, if we toss a fair coin 4 times, each of the 16 sample points (as pictured above) is assigned
probability 1

16 . We will see examples of non-uniform probability distributions soon.

After performing an experiment, we are often interested in knowing whether an event occurred. For example,
we might be interested in the event that there were “exactly 2 H’s in four tosses of the coin". How do we
formally define the concept of an event in terms of the sample space Ω? Here is a beautiful answer. We will
identify the event “exactly 2 H’s in four tosses of the coin" with the subset consisting of those outcomes in
which there are exactly two H’s:
{HHT T,HT HT,HT T H,T HHT,T HT H,T T HH} ⊆Ω. Now we turn this around and say that formally an
event A is just a subset of the sample space, A⊆Ω.

How should we define the probability of an event A? Naturally, we should just add up the probabilities of
the sample points in A.

For any event A⊆Ω, we define the probability of A to be

Pr[A] = ∑
ω∈A

Pr[ω].

Thus the probability of getting exactly two H’s in four coin tosses can be calculated using this definition as
follows. A consists of all sequences that have exactly two H’s, and so |A|=

(4
2

)
= 6. For this example, there

are 24 = 16 possible outcomes for flipping four coins. Thus, each sample point ω ∈ A has probability 1
16 ;

and, as we saw above, there are six sample points in A, giving us Pr[A] = 6 · 1
16 = 3

8 .

Examples
We will now look at examples of random experiments and their corresponding sample spaces, along with
possible probability spaces and events.

Coin Flipping
Suppose we have a coin of bias p, and our experiment consists of flipping the coin 4 times. The sample
space Ω consists of the sixteen possible sequences of H’s and T’s shown in the figure on the last page.

The probability space depends on p. If p = 1
2 the probabilities are assigned uniformly; the probability of

each sample point is 1
16 . What if the coin comes up heads with probability 2

3 and tails with probability 1
3

(i.e. the bias is p = 2
3 )? Then the probabilities are different. For example, Pr[HHHH] = 2

3×
2
3×

2
3×

2
3 = 16

81 ,
while Pr[T T HH] = 1

3 ×
1
3 ×

2
3 ×

2
3 = 4

81 . [Note: We have cheerfully multiplied probabilities here; we’ll
explain why this is OK later. It is not always OK!]
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What type of events can we consider in this setting? Let event A be the event that all four coin tosses are
the same. Then A = {HHHH,T T T T}. HHHH has probability 2

3
4 and T T T T has probability 1

3
4. Thus,

Pr[A] = Pr[HHHH]+Pr[T T T T ] = 2
3

4
+ 1

3
4
= 17

81 .

Next, consider event B: the event that there are exactly two heads. The probability of any particular outcome
with two heads (such as HT HT ) is 2

3
2 1

3
2. How many such outcomes are there? There are

(4
2

)
= 6 ways of

choosing the positions of the heads, and these choices completely specify the sequence. So Pr[B] = 6 2
3

2 1
3

2
=

24
81 = 8

27 .

More generally, if we flip the coin n times, we get a sample space Ω of cardinality 2n. The sample points
are all possible sequences of n H’s and T’s. If the coin has bias p, and if we consider any sequence of n coin
flips with exactly r H’s, then the the probability of this sequence is pr(1− p)n−r.

Now consider the event C that we get exactly r H’s when we flip the coin n times. This event consists
of exactly

(n
r

)
sample points. Each has probability pr(1− p)n−r. So the probability of this event, P[C] =(n

r

)
pr(1− p)n−r.

Biased coin-tossing sequences show up in many contexts: for example, they might model the behavior of n
trials of a faulty system, which fails each time with probability p.

Rolling Dice
The next random experiment we will discuss consists of rolling two dice. In this experiment, Ω = {(i, j) :
1≤ i, j≤ 6}. The probability space is uniform, i.e. all of the sample points have the same probability, which
must be 1

|Ω| . In this case, |Ω| = 36, so each sample point has probability 1
36 . In such circumstances, the

probability of any event A is clearly just

Pr[A] =
# of sample points in A
# of sample points in Ω

=
|A|
|Ω|

.

So for uniform spaces, computing probabilities reduces to counting sample points!

Now consider two events: the event A that the sum of the dice is at least 10 and the event B that there is
at least one 6. By writing out the number of sample points in each event, we can determine the number of
sample points in each event; |A|= 6 and |B|= 11. By the observation above, it follows that Pr[A] = 6

36 = 1
6

and Pr[B] = 11
36 .

Card Shuffling
The random experiment consists of shuffling a deck of cards. Ω is equal to the set of the 52! permutations of
the deck. The probability space is uniform. Note that we’re really talking about an idealized mathematical
model of shuffling here; in real life, there will always be a bit of bias in our shuffling. However, the
mathematical model is close enough to be useful.

Poker Hands
Here’s another experiment: shuffling a deck of cards and dealing a poker hand. In this case, S is the set of 52
cards and our sample space Ω = {all possible poker hands}, which corresponds to choosing k = 5 objects
without replacement from a set of size n = 52 where order does not matter. Hence, as we saw in the previous
Note, |Ω| =

(52
5

)
= 52×51×50×49×48

5×4×3×2×1 = 2,598,960. Since the deck is assumed to be randomly shuffled, the
probability of each outcome is equally likely and we are therefore dealing with a uniform probability space.
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Let A be the event that the poker hand is a flush. [For those who are not addicted to gambling, a flush is a
hand in which all cards have the same suit, say Hearts.] Since the probability space is uniform, computing
Pr[A] reduces to simply computing |A|, or the number of poker hands which are flushes. There are 13 cards
in each suit, so the number of flushes in each suit is

(13
5

)
. The total number of flushes is therefore 4 ·

(13
5

)
.

Then we have

Pr[hand is a flush] =
4 ·

(13
5

)(52
5

) =
4 ·13! ·5! ·47!

5! ·8! ·52!
=

4 ·13 ·12 ·11 ·10 ·9
52 ·51 ·50 ·49 ·48

≈ 0.002.

Balls and Bins
In this experiment, we will throw 20 (labeled) balls into 10 (labeled) bins. Assume that each ball is equally
likely to land in any bin, regardless of what happens to the other balls.

If you wish to understand this situation in terms of sampling a sequence of k elements from a set S of
cardinality n: here the set S consists of the 10 bins, and we are sampling with replacement k = 20 times.
The order of sampling matters, since the balls are labeled.

The sample space Ω is equal to {(b1,b2, . . . ,b20) : 1≤ bi ≤ 10}, where the component bi denotes the bin in
which ball i lands. The cardinality of the sample space, |Ω|, is equal to 1020- each element bi in the sequence
has 10 possible choices, and there are 20 elements in the sequence. More generally, if we throw m balls into
n bins, we have a sample space of size nm. The probability space is uniform; as we said earlier, each ball is
equally likely to land in any bin.

Let A be the event that bin 1 is empty. Since the probability space is uniform, we simply need to count
how many outcomes have this property. This is exactly the number of ways all 20 balls can fall into the
remaining nine bins, which is 920. Hence, Pr[A] = 920

1020 = ( 9
10)

20 ≈ 0.12.

Let B be the event that bin 1 contains at least one ball. This event is the complement Ā of A, i.e., it consists
of precisely those sample points which are not in A. So Pr[B] = 1−Pr[A]≈ .88. More generally, if we throw
m balls into n bins, we have:

Pr[bin 1 is empty] =
(

n−1
n

)m

=

(
1− 1

n

)m

.

As we shall see, balls and bins is another probability space that shows up very often in Computer Science:
for example, we can think of it as modeling a load balancing scheme, in which each job is sent to a random
processor.

It is also a more general model for problems we have previously considered. For example, flipping a fair
coin 3 times is a special case in which the number of balls (m) is 3 and the number of bins (n) is 2. Rolling
two dice is a special case in which m = 2 and n = 6.

Birthday Paradox
The “birthday paradox” is a remarkable phenomenon that examines the chances that two people in a group
have the same birthday. It is a “paradox” not because of a logical contradiction, but because it goes against
intuition. For ease of calculation, we take the number of days in a year to be 365. Then U = {1, . . . ,365},
and the random experiment consists of drawing a sample of n elements from U , where the elements are the
birth dates of n people in a group. Then |Ω| = 365n. This is because each sample point is a sequence of
possible birthdays for n people; so there are n points in the sequence and each point has 365 possible values.
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Let A be the event that at least two people have the same birthday. If we want to determine Pr[A], it might be
simpler to instead compute the probability of the complement of A, Pr[Ā]. Ā is the event that no two people
have the same birthday. Since Pr[A] = 1−Pr[Ā], we can then easily compute Pr[A].

We are again working in a uniform probability space, so we just need to determine |Ā|. Equivalently, we
are computing the number of ways there are for no two people to have the same birthday. There are 365
choices for the first person, 364 for the second, . . . , 365− n+ 1 choices for the nth person, for a total of
365×364×·· ·× (365−n+1). Note that this is simply an application of the first rule of counting; we are
sampling without replacement and the order matters.

Thus we have Pr[Ā] = |Ā|
|Ω| =

365×364×···×(365−n+1)
365n . Then Pr[A] = 1− 365×364×···×(365−n+1)

365n . This allows us to
compute Pr[A] as a function of the number of people, n. Of course, as n increases Pr[A] increases. In fact,
with n = 23 people you should be willing to bet that at least two people do have the same birthday, since
then Pr[A] is larger than 50%! For n = 60 people, Pr[A] is over 99%.

The Monty Hall Problem
In an (in)famous 1970s game show hosted by one Monty Hall, a contestant was shown three doors; behind
one of the doors was a prize, and behind the other two were goats. The contestant picks a door (but doesn’t
open it). Then Hall’s assistant (Carol), opens one of the other two doors, revealing a goat (since Carol
knows where the prize is, she can always do this). The contestant is then given the option of sticking with
his current door, or switching to the other unopened one. He wins the prize if and only if his chosen door
is the correct one. The question, of course, is: Does the contestant have a better chance of winning if he
switches doors?

Intuitively, it seems obvious that since there are only two remaining doors after the host opens one, they
must have equal probability. So you may be tempted to jump to the conclusion that it should not matter
whether or not the contestant stays or switches.

Yet there are other people whose intuition cries out that the contestant is better off switching. So who’s
correct?

As a matter of fact, the contestant has a better chance of picking the car if he uses the switching strategy.
How can you convince yourself that this is true? One way you can do this is by doing a rigorous analysis.
You would start by writing out the sample space, and then assign probabilities to each sample point. Finally
you would calculate the probability of the event that the contestant wins under the sticking strategy. This
is an excellent exercise if you wish to make sure you understand the formalism of probability theory we
introduced above.

Let us instead give a more intuitive pictorial argument. Initially when the contestant chooses the door, he has
a 1

3 chance of picking the car. This must mean that the other doors combined have a 2
3 chance of winning. But

after Carol opens a door with a goat behind it, how do the probabilities change? Well, everyone knows that
there is a goat behind one of the doors that the contestant did not pick. So no matter whether the contestant
is winning or not, Carol is always able to open one of the other doors to reveal a goat. This means that the
contestant still has a 1

3 chance of winning. Also the door that Carol opened has no chance of winning. What
about the last door? It must have a 2

3 chance of containing the car, and so the contestant has a higher chance
of winning if he or she switches doors. This argument can be summed up nicely in the following picture:
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You will be able to formalize this intuitive argument once we cover conditional probability.

In the meantime, to approach this problem formally, first determine the sample space and the probability
space. Just a hint: it is not a uniform probability space! Then formalize the event we have described above
(as a subspace of the sample space), and compute the probability of the event. Good luck!

Summary
The examples above illustrate the importance of doing probability calculations systematically, rather than
“intuitively." Recall the key steps in all our calculations:

• What is the sample space (i.e., the experiment and its set of possible outcomes)?

• What is the probability of each outcome (sample point)?

• What is the event we are interested in (i.e., which subset of the sample space)?

• Finally, compute the probability of the event by adding up the probabilities of the sample points inside
it.

Whenever you meet a probability problem, you should always go back to these basics to avoid potential
pitfalls. Even experienced researchers make mistakes when they forget to do this — witness many erroneous
“proofs”, submitted by mathematicians to newspapers at the time, of the fact that the switching strategy in
the Monty Hall problem does not improve the odds.
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