
Note 10 Supplement:
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This note is optional. Please read on only if you are interested.
Can you explicitly construct a bijection between (0, 1] and [0, 1]? It is not

so easy to find a bijection directly, but with the help of the following theorem,
it suffices to find an injection in each direction.

Theorem 1 (Cantor-Schröder-Bernstein). If f : X → Y and g : Y → X are
injections (one-to-one), then there exists a bijection ϕ : X → Y .

Proof. The proof is constructive. We start with a point x ∈ X, and we
attempt to apply the function g−1, i.e. we try to compute g−1(x). This is
only possible if x lies in the range of g, but let us accept this for now. The
point g−1(x) lies in the set Y , and now we can try to compute f−1(g−1(x)).
Again, this may or may not be possible, depending on whether g−1(x) lies
in the range of f , but we try anyway. If we succeed, then we can try to
compute g−1(f−1(g−1(x))) and so forth. Now, for every x ∈ X, we apply this
procedure, and there are three possible outcomes:

1. This procedure terminates at some point, because we are unable to
apply g−1. If so, we put x in the set XX .

2. This procedure terminates at some point, because we are unable to
apply f−1. If so, we put x in the set XY .

3. This procedure never terminates. If so, we put x in the set X∞.
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Thus, X is the disjoint union of the three sets above, X = XX ∪XY ∪X∞.
Now, we apply the same trick to partition Y as well. Explicitly, fix some
y ∈ Y and attempt to apply f−1 to x; if we succeed then we try to apply g−1

to f−1(y), and if we succeed we attempt to apply f−1 to g−1(f−1(y)), etc.
Again, we split Y into three cases:

1. Define YX to be the set of y ∈ Y for which the procedure terminates,
because we cannot apply g−1 anymore.

2. Define YY to be the set of y ∈ Y for which the procedure terminates,
because we cannot apply f−1 anymore.

3. Define Y∞ to be the set of y ∈ Y for which the procedure never
terminates.

We can write Y as a disjoint union as well: Y = YX ∪ YY ∪ Y∞. Now, our
plan is to construct the bijection ϕ in the following way:

ϕ(x) =


f(x), x ∈ XX

g−1(x), x ∈ XY

f(x), x ∈ X∞

The bijection above is actually composed of three different bijections:

XX
f−→ YX

XY
g−1

−−→ YY

X∞
f−→ Y∞

Our task now is to verify the above bijections. First, a bit of terminology
to simplify the explanation: if we apply the procedure for partitioning X to
a point x ∈ X, we say that we are applying the X-procedure to x. (Here,
“applying the procedure” simply means that we apply g−1 and f−1 alternately
until the procedure terminates, or does not terminate at all.) Similarly, if we
apply the procedure for partitioning Y to a point y ∈ Y , we say that we are
applying the Y -procedure to y.

For the first bijection, f : XX → YX , the first thing that we have to
check is that f does indeed map elements of XX to YX as advertised. If
x ∈ XX , then that means applying the X-procedure to x fails at some step
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because we cannot apply g−1. Now, x is mapped by f to the element f(x),
and consider what happens when we apply the Y -procedure to f(x): first we
apply f−1(f(x)), which is clearly valid since f(x) lies in the range of f . Next,
we apply g−1 and f−1 alternately, and we see that the procedure for doing
so exactly mirrors the steps we take when we apply the X-procedure to x.
In other words, the X-procedure applied to x terminates because we cannot
apply g−1, if and only if the Y -procedure applied to f(y) terminates because
we cannot apply g−1. This proves that f(x) ∈ YX .

Next, we must show that f is a bijection between these sets. Consider
any point y ∈ YX . When we apply the Y -procedure to y, the first thing we
do is attempt to apply f−1. However, since y ∈ YX , the Y -procedure cannot
stop here (we must terminate when we cannot apply g−1 anymore). This says
that if y ∈ YX , then we can successfully apply f−1 to y, which is what we
wanted to show. (We already know that f is injective. Saying that we can
apply f−1 to any y ∈ YX is saying that every y ∈ YX lies in the range of f ,
so f is also surjective, so f is a bijection.)

We have shown the bijection between XX and YX , and in principle, we
must now prove the bijections between XY and YY , and between X∞ and Y∞.
The proofs end up looking almost identical to the one described above, so let’s
be brief: g−1 maps XY to YY , because both x and g−1(x) must terminate when
we are unable to apply f−1; and this is a bijection because we know that if
x ∈ XY , then we succeed at applying g−1. Also, f maps X∞ to Y∞ because if
the procedure never terminates for x, then it clearly never terminates for f(x)
either; and f is a bijection because if y ∈ Y∞, then because the Y -procedure
applied to y never terminates, we must succeed at applying f−1.

Here is an example of what sort of bijection is constructed in the theorem.

Example 1. We will construct a bijection ϕ : N → N (here, X = Y = N)
from the two injections f(x) = 2x and g(x) = 2x. From the Cantor-Schröder-
Bernstein Theorem, we know that the bijection will consist of f(x) = 2x and
g−1(x) = x/2; it only remains to determine what XX , XY , and X∞ are.

1. Suppose that we take x ∈ X, and try to apply g−1 to x. If this fails,
then we know that x ∈ XX . This will fail exactly when x is odd, or
equivalently, when x ≡ 1 (mod 2).

2. Suppose that we successfully apply g−1 to x, which means that x is even.
What happens when we fail to apply f−1? That means that x is even,
but x/2 is odd, which is to say that x ≡ 2 (mod 4). Here, x ∈ XY .
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3. Assume that the previous two steps succeeded, so that x is divisible by
4. If we cannot apply g−1 here, then that means x is even, x/2 is even,
but x/4 is odd, which is equivalent to x ≡ 4 (mod 8). Here, x ∈ XX .

4. The pattern continues. . .

We can write the full bijection ϕ as follows: if x ≡ n/2 (mod n), where n
is some even power of 2 (such as 22, 24, 26, etc.), then we map x to x/2 (this
is g−1); otherwise, we map x to 2x (this is f).

Example 2. Can we find a bijection from (0, 1] to [0, 1]? We supply two
injections. The first injection, f : (0, 1]→ [0, 1], is obvious. For the second
injection, we can define g(x) = x/2 + 1/4. (Basically, we squash the interval
[0, 1] to [0, 1/2], and then add a constant to prevent any input from mapping
to 0.) The Cantor-Schröder-Bernstein Theorem supplies a bijection ϕ, so
we know that the cardinalities of (0, 1] and [0, 1] are the same (in fact, they
have the same cardinality as R). However, we choose to skip the explicit
construction of this bijection as we did in the example above.

For this specific question, we can give an explicit bijection directly. Since
Q∩ [0, 1] is countable, we can list the elements Q∩ [0, 1] = {q0, q1, q2, q3, . . . },
where we can take q0 = 0. Then, define the bijection f : [0, 1] → (0, 1] by
f(qi) := qi+1 for each i ∈ N, and f(x) := x for all x /∈ Q ∩ [0, 1].
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