1 Ball in Bins

You are throwing k balls into n bins. Let X_{i} be the number of balls thrown into bin i.

1. What is $\mathbb{E}\left[X_{i}\right]$?
2. Compute $\mathbb{E}\left[X_{i}^{2}\right]$.
3. What is the expected number of empty locations?
4. What is the expected number of collisions?

2 How Many Queens?

You shuffle a standard 52-card deck, before drawing the first three cards from the top of the pile.
Let X denote the number of queens you draw.
(a) What is $\mathbb{P}(X=0)$?
(b) What is $\mathbb{P}(X=1)$?
(c) What is $\mathbb{P}(X=2)$?
(d) What is $\mathbb{P}(X=3)$?
(e) Do the answers you computed in parts (a) through (d) add up to 1 , as expected?
(f) Compute $\mathbb{E}(X)$ from the definition of expectation.
(g) Suppose we define indicators $X_{i}, 1 \leq i \leq 3$, where X_{i} is the indicator variable that equals 1 if the i th card is a queen and 0 otherwise. Compute $\mathbb{E}(X)$.
(h) Are the X_{i} indicators independent? Does this affect your solution to part (g)?

3 More Family Planning

(a) Suppose we have a random variable $N \sim \operatorname{Geom}(1 / 3)$ representing the number of children of a randomly chosen family. Assume that within the family, children are equally likely to be boys and girls. Let B be the number of boys and G the number of girls in the family. What is the joint probability distribution of B, G ?
(b) Given that we know there are 0 girls in the family, what is the most likely number of boys in the family?
(c) Now let X and Y be independent random variables representing the number of children in two independently, randomly chosen families. Suppose $X \sim \operatorname{Geom}(p)$ and $Y \sim \operatorname{Geom}(q)$. Using their joint distribution, find the probability that the number of children in the first family (X) is less than the number of children in the second family (Y). (You may use the convergence formula for a Geometric Series: $\sum_{k=0}^{\infty} r^{k}=\frac{1}{1-r}$ for $|r|<1$)
(d) Show how you could obtain your answer from the previous part using an interpretation of the geometric distribution.

