CS 70 Discrete Mathematics and Probability Theory Summer 2018 Sinho Chewi and Vrettos Moulos DIS 5A

1 Boy or Girl Paradox

You know Mr. Smith has two children, at least one of whom is a boy. Assume that gender is independent and uniformly distributed, so for any child, the probability that they are a boy is the same as the probability they are a girl, which is 1/2.

- (a) What is the probability that both children are boys?
- (b) Now suppose you knock on Mr. Smith's front door and you are greeted by a boy who you correctly deduce to be Mr. Smith's older child. What is the probability that he has two boys? Compare your answer to the answer in part (a).

2 Lie Detector

A lie detector is known to be 4/5 reliable when the person is guilty and 9/10 reliable when the person is innocent. If a suspect is chosen from a group of suspects of which only 1/100 have ever committed a crime, and the test indicates that the person is guilty, what is the probability that he is innocent?

3 Pairwise Independence

The events A_1, A_2, A_3 are *pairwise independent* if, for all $i \neq j$, A_i is independent of A_j . However, pairwise independence is a weaker statement than *mutual independence*, which requires the additional condition that $\mathbb{P}(A_1, A_2, A_3) = \mathbb{P}(A_1)\mathbb{P}(A_2)\mathbb{P}(A_3)$.

Try to construct an example where three events are pairwise independent but not mutually independent.

Here is one potential starting point: Let A_1, A_2 be the respective results of flipping two fair coins. Can you come up with an event A_3 that works?

4 Mutually Independent Events

There are three mutually independent events: A, B, and C. The probability that event A occurs is 0.4, the probability that event B occurs is 0.6, and the probability that event C occurs is 0.3. Calculate the following.

(a) Pr[A|B].

- (b) $Pr[A \cap B]$.
- (c) $Pr[A \cup C]$.
- (d) $Pr[B \cap C]$.
- (e) $Pr[A \cap B \cap C]$.
- (f) $Pr[A \cup B \cup C]$.