## 1 Boy or Girl Paradox

You know Mr. Smith has two children, at least one of whom is a boy. Assume that gender is independent and uniformly distributed, so for any child, the probability that they are a boy is the same as the probability they are a girl, which is $1 / 2$.
(a) What is the probability that both children are boys?
(b) Now suppose you knock on Mr. Smith's front door and you are greeted by a boy who you correctly deduce to be Mr. Smith's older child. What is the probability that he has two boys? Compare your answer to the answer in part (a).

## 2 Lie Detector

A lie detector is known to be $4 / 5$ reliable when the person is guilty and $9 / 10$ reliable when the person is innocent. If a suspect is chosen from a group of suspects of which only $1 / 100$ have ever committed a crime, and the test indicates that the person is guilty, what is the probability that he is innocent?

## 3 Pairwise Independence

The events $A_{1}, A_{2}, A_{3}$ are pairwise independent if, for all $i \neq j, A_{i}$ is independent of $A_{j}$. However, pairwise independence is a weaker statement than mutual independence, which requires the additional condition that $\mathbb{P}\left(A_{1}, A_{2}, A_{3}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2}\right) \mathbb{P}\left(A_{3}\right)$.

Try to construct an example where three events are pairwise independent but not mutually independent.
Here is one potential starting point: Let $A_{1}, A_{2}$ be the respective results of flipping two fair coins. Can you come up with an event $A_{3}$ that works?

## 4 Mutually Independent Events

There are three mutually independent events: A, B, and C. The probability that event A occurs is 0.4 , the probability that event $B$ occurs is 0.6 , and the probability that event $C$ occurs is 0.3 . Calculate the following.
(a) $\operatorname{Pr}[A \mid B]$.
(b) $\operatorname{Pr}[A \cap B]$.
(c) $\operatorname{Pr}[A \cup C]$.
(d) $\operatorname{Pr}[B \cap C]$.
(e) $\operatorname{Pr}[A \cap B \cap C]$.
(f) $\operatorname{Pr}[A \cup B \cup C]$.

