CS 70 Discrete Mathematics and Probability Theory Summer 2018 Sinho Chewi and Vrettos Moulos DIS 4C

1 Flippin' Coins

Suppose we have a biased coin, with outcomes *H* and *T*, with probability of heads $\mathbb{P}[H] = 3/4$ and probability of tails $\mathbb{P}[T] = 1/4$. Suppose we perform an experiment in which we toss the coin 3 times. An outcome of this experiment is (X_1, X_2, X_3) , where $X_i \in \{H, T\}$.

(a) What is the *sample space* for our experiment?

- (b) Which of the following are examples of *events*? Select all that apply.
 - $\{(H,H,T),(H,H),(T)\}$
 - $\{(T,H,H), (H,T,H), (H,H,T), (H,H,H)\}$
 - $\{(T,T,T)\}$
 - $\{(T,T,T), (H,H,H)\}$
 - $\{(T,H,T),(H,H,T)\}$

(c) What is the complement of the event $\{(H,H,H), (H,H,T), (H,T,H), (H,T,T), (T,T,T)\}$?

- (d) Let *A* be the event that our outcome has 0 heads. Let *B* be the event that our outcome has exactly 2 heads. What is $A \cup B$?
- (e) What is the probability of the outcome (H, H, T)?
- (f) What is the probability of the event that our outcome has exactly two heads?

2 Venn Diagram

Out of 1000 computer science students, 400 belong to a club (and may work part time), 500 work part time (and may belong to a club), and 50 belong to a club and work part time.

- (a) Suppose we choose a student uniformly at random. Let *C* be the event that the student belongs to a club and *P* the event that the student works part time. Draw a picture of the sample space Ω and the events *C* and *P*.
- (b) What is the probability that the student belongs to a club?
- (c) What is the probability that the student works part time?
- (d) What is the probability that the student belongs to a club AND works part time?
- (e) What is the probability that the student belongs to a club OR works part time?

3 Probability Practice

- (a) If we put 5 math, 6 biology, 8 engineering, and 3 physics books on a bookshelf at random, what is the probability that all the math books are together?
- (b) A message source M of a digital communication system outputs a word of length 8 characters, with the characters drawn from the ternary alphabet $\{0, 1, 2\}$, and all such words are equally probable. What is the probability that M produces a word that looks like a byte (*i.e.*, no appearance of '2')?
- (c) If five numbers are selected at random from the set $\{1, 2, 3, ..., 20\}$, what is the probability that their minimum is larger than 5? (A number can be chosen more than once.)