1 Flippin' Coins

Suppose we have a biased coin, with outcomes H and T, with probability of heads $\mathbb{P}[H]=3 / 4$ and probability of tails $\mathbb{P}[T]=1 / 4$. Suppose we perform an experiment in which we toss the coin 3 times. An outcome of this experiment is $\left(X_{1}, X_{2}, X_{3}\right)$, where $X_{i} \in\{H, T\}$.
(a) What is the sample space for our experiment?
(b) Which of the following are examples of events? Select all that apply.

- $\{(H, H, T),(H, H),(T)\}$
- $\{(T, H, H),(H, T, H),(H, H, T),(H, H, H)\}$
- $\{(T, T, T)\}$
- $\{(T, T, T),(H, H, H)\}$
- $\{(T, H, T),(H, H, T)\}$
(c) What is the complement of the event $\{(H, H, H),(H, H, T),(H, T, H),(H, T, T),(T, T, T)\}$?
(d) Let A be the event that our outcome has 0 heads. Let B be the event that our outcome has exactly 2 heads. What is $A \cup B$?
(e) What is the probability of the outcome (H, H, T) ?
(f) What is the probability of the event that our outcome has exactly two heads?

2 Venn Diagram

Out of 1000 computer science students, 400 belong to a club (and may work part time), 500 work part time (and may belong to a club), and 50 belong to a club and work part time.
(a) Suppose we choose a student uniformly at random. Let C be the event that the student belongs to a club and P the event that the student works part time. Draw a picture of the sample space Ω and the events C and P.
(b) What is the probability that the student belongs to a club?
(c) What is the probability that the student works part time?
(d) What is the probability that the student belongs to a club AND works part time?
(e) What is the probability that the student belongs to a club OR works part time?

3 Probability Practice

(a) If we put 5 math, 6 biology, 8 engineering, and 3 physics books on a bookshelf at random, what is the probability that all the math books are together?
(b) A message source M of a digital communication system outputs a word of length 8 characters, with the characters drawn from the ternary alphabet $\{0,1,2\}$, and all such words are equally probable. What is the probability that M produces a word that looks like a byte (i.e., no appearance of ' 2 ')?
(c) If five numbers are selected at random from the set $\{1,2,3, \ldots, 20\}$, what is the probability that their minimum is larger than 5? (A number can be chosen more than once.)

