CS 70 Discrete Mathematics and Probability Theory Summer 2018 Sinho Chewi and Vrettos Moulos DIS 3D

1 Countability Basics

- 1. Is $f : \mathbb{N} \to \mathbb{N}$, defined by $f(n) = n^2$ an injection (one-to-one)? Briefly justify.
- 2. Is $f : \mathbb{R} \to \mathbb{R}$, defined by $f(x) = x^3 + 1$ a surjection (onto)? Briefly justify.

2 Count It!

For each of the following collections, determine and briefly explain whether it is finite, countably infinite (like the natural numbers), or uncountably infinite (like the reals):

- (a) \mathbb{N} , the set of all natural numbers.
- (b) \mathbb{Z} , the set of all integers.
- (c) \mathbb{Q} , the set of all rational numbers.
- (d) \mathbb{R} , the set of all real numbers.
- (e) The integers which divide 8.
- (f) The integers which 8 divides.
- (g) The functions from \mathbb{N} to \mathbb{N} .
- (h) Numbers that are the roots of nonzero polynomials with integer coefficients.
- 3 Countability Practice
- (a) Prove or disprove: The set of increasing functions $f : \mathbb{N} \to \mathbb{N}$ (i.e., if $x \ge y$, then $f(x) \ge f(y)$) is countable.

- (b) Prove or disprove: The set of decreasing functions $f : \mathbb{N} \to \mathbb{N}$ (i.e., if $x \ge y$, then $f(x) \le f(y)$) is countable.
- (c) Is a set of disks in \mathbb{R}^2 such that no two disks overlap necessarily countable or possibly uncountable? [A disk is a region in the plane of the form $\{(x, y) \in \mathbb{R}^2 : (x x_0)^2 + (y y_0)^2 \le r^2\}$, for some $x_0, y_0, r \in \mathbb{R}, r > 0$.]
- (d) Is a set of circles in \mathbb{R}^2 such that no two circles overlap necessarily countable or possibly uncountable? [*Hint*: A circle is a subset of the plane of the form $\{(x,y) \in \mathbb{R}^2 : (x-x_0)^2 + (y-y_0)^2 = r^2\}$ for some $x_0, y_0, r \in \mathbb{R}$, r > 0. The difference between a circle and a disk is that a disk contains all of the points in its interior, whereas a circle does not.]