CS 70 Discrete Mathematics and Probability Theory Summer 2018 Sinho Chewi and Vrettos Moulos DIS 1C

1 Induction

Prove the following using induction:

- (a) For all natural numbers n > 2, $2^n > 2n + 1$.
- (b) For all positive integers n, $1^3 + 3^3 + 5^3 + \dots + (2n-1)^3 = n^2(2n^2 1)$.
- (c) For all positive natural numbers $n, \frac{5}{4} \cdot 8^n + 3^{3n-1}$ is divisible by 19.

2 Fibonacci Proof

Let F_i be the *i*th Fibonacci number, defined by $F_{i+2} = F_{i+1} + F_i$ and $F_0 = 0$, $F_1 = 1$. Prove that

$$\sum_{i=0}^n F_i^2 = F_n F_{n+1}.$$

3 Make It Stronger

Suppose that the sequence $a_1, a_2, ...$ is defined by $a_1 = 1$ and $a_{n+1} = 3a_n^2$ for $n \ge 1$. We want to prove that

$$a_n \leq 3^{2^n}$$

for every positive integer *n*.

(a) Suppose that we want to prove this statement using induction, can we let our induction hypothesis be simply $a_n \leq 3^{2^n}$? Show why this does not work.

(b) Try to instead prove the statement $a_n \le 3^{2^n-1}$ using induction. Does this statement imply what you tried to prove in the previous part?

4 Bit String

Prove that every positive integer n can be written with a string of 0s and 1s. In other words, prove that we can write

$$n = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + c_0 \cdot 2^0,$$

where $k \in \mathbb{N}$ and $c_k \in \{0, 1\}$.