CS $70 \quad$ Discrete Mathematics and Probability Theory Summer 2018 Sinho Chewi and Vrettos Moulos

1 Induction

Prove the following using induction:
(a) For all natural numbers $n>2,2^{n}>2 n+1$.
(b) For all positive integers $n, 1^{3}+3^{3}+5^{3}+\cdots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right)$.
(c) For all positive natural numbers $n, \frac{5}{4} \cdot 8^{n}+3^{3 n-1}$ is divisible by 19 .

2 Fibonacci Proof

Let F_{i} be the $i^{\text {th }}$ Fibonacci number, defined by $F_{i+2}=F_{i+1}+F_{i}$ and $F_{0}=0, F_{1}=1$. Prove that

$$
\sum_{i=0}^{n} F_{i}^{2}=F_{n} F_{n+1}
$$

3 Make It Stronger

Suppose that the sequence a_{1}, a_{2}, \ldots is defined by $a_{1}=1$ and $a_{n+1}=3 a_{n}^{2}$ for $n \geq 1$. We want to prove that

$$
a_{n} \leq 3^{2^{n}}
$$

for every positive integer n.
(a) Suppose that we want to prove this statement using induction, can we let our induction hypothesis be simply $a_{n} \leq 3^{2^{n}}$? Show why this does not work.
(b) Try to instead prove the statement $a_{n} \leq 3^{2^{n}-1}$ using induction. Does this statement imply what you tried to prove in the previous part?

4 Bit String

Prove that every positive integer n can be written with a string of 0 s and 1 s . In other words, prove that we can write

$$
n=c_{k} \cdot 2^{k}+c_{k-1} \cdot 2^{k-1}+\cdots+c_{1} \cdot 2^{1}+c_{0} \cdot 2^{0}
$$

where $k \in \mathbb{N}$ and $c_{k} \in\{0,1\}$.

