CS $70 \quad$ Discrete Mathematics and Probability Theory

1 Logic
Decide whether each of the following is true or false and justify your answer:
(a) $\forall x(P(x) \wedge Q(x)) \equiv \forall x P(x) \wedge \forall x Q(x)$
(b) $\forall x(P(x) \vee Q(x)) \equiv \forall x P(x) \vee \forall x Q(x)$
(c) $\exists x(P(x) \vee Q(x)) \equiv \exists x P(x) \vee \exists x Q(x)$
(d) $\exists x(P(x) \wedge Q(x)) \equiv \exists x P(x) \wedge \exists x Q(x)$

2 Contraposition

Prove the statement "if $a+b<c+d$, then $a<c$ or $b<d$ ".

3 Perfect Square

A perfect square is an integer n of the form $n=m^{2}$ for some integer m. Prove that every odd perfect square is of the form $8 k+1$ for some integer k.

4 Numbers of Friends

Prove that if there are $n \geq 2$ people at a party, then at least 2 of them have the same number of friends at the party.
(Hint: The Pigeonhole Principle states that if n items are placed in m containers, where $n>m$, at least one container must contain more than one item. You may use this without proof.)

5 Fermat's Contradiction

Prove that $2^{1 / n}$ is not rational for any integer $n \geq 3$. (Hint: Use Fermat's Last Theorem. It states that there exists no positive integers a, b, c s.t. $a^{n}+b^{n}=c^{n}$ for $n \geq 3$.)

